Applied Magnetic Resonance

, Volume 43, Issue 1–2, pp 21–41 | Cite as

Theoretical Aspects of Dynamic Nuclear Polarization in the Solid State: The Influence of High Radical Concentrations on the Solid Effect and Cross Effect Mechanisms

  • Y. Hovav
  • O. Levinkron
  • A. Feintuch
  • S. Vega


Dynamic nuclear polarization (DNP) is used to enhance signals in NMR and MRI experiments. During these experiments microwave (MW) irradiation mediates transfer of spin polarization from unpaired electrons to their neighboring nuclei. Solid state DNP is typically applied to samples containing high concentrations (i.e. 10–40 mM) of stable radicals that are dissolved in glass forming solvents together with molecules of interest. Three DNP mechanisms can be responsible for enhancing the NMR signals: the solid effect (SE), the cross effect (CE), and thermal mixing (TM). Recently, numerical simulations were performed to describe the SE and CE mechanisms in model systems composed of several nuclei and one or two electrons. It was shown that the presence of core nuclei, close to DNP active electrons, can result in a decrease of the nuclear polarization, due to broadening of the double quantum (DQ) and zero quantum (ZQ) spectra. In this publication we consider samples with high radical concentrations, exhibiting broad inhomogeneous EPR line-shapes and slow electron cross-relaxation rates, where the TM mechanism is not the main source for the signal enhancements. In this case most of the electrons in the sample are not affected by the MW field applied at a discrete frequency. Numerical simulations are performed on spin systems composed of several electrons and nuclei in an effort to examine the role of the DNP inactive electrons. Here we show that these electrons also broaden the DQ and ZQ spectra, but that they hardly cause any loss to the DNP enhanced nuclear polarization due to their spin-lattice relaxation mechanism. Their presence can also prevent some of the polarization losses due to the core nuclei.


Dynamic Nuclear Polarization Double Quantum Core Nucleus Dynamic Nuclear Polarization Enhancement Solid Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the German-Israeli Project Cooperation of the DFG through a special allotment by the Ministry of Education and Research (BMBF) of the Federal Republic of Germany. It was made possible in part by the historic generosity of the Harold Perlman Family. S.V. holds the Joseph and Marian Robbins Professorial Chair in Chemistry.


  1. 1.
    R.G. Griffin, T.F. Prisner, High field dynamic nuclear polarization—the renaissance. Phys. Chem. Chem. Phys. PCCP 12(22), 5737–40 (2010)CrossRefGoogle Scholar
  2. 2.
    A. Overhauser, Polarization of nuclei in metals. Phys. Rev. 92(2), 411–415 (1953)ADSzbMATHCrossRefGoogle Scholar
  3. 3.
    C. Jeffries, Polarization of nuclei by resonance saturation in paramagnetic crystals. Phys. Rev. 106(1), 164–165 (1957)MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    A. Abragam, P. George, Une nouvelle methode de polarisation dynamique des noyaux atomiques dans les solids. Comptes Rendus Hebdomadaires des Seances de l’Academie des Sciences 246, 2253–2256 (1958)Google Scholar
  5. 5.
    A.V. Kessenikh, V.I. Lushchikov, A.A. Manenkov, Y.V. Taran, Sov. Phys. Solid State 5, 321–329 (1963)Google Scholar
  6. 6.
    A.V. Kessenikh, A.A. Manenkov, G.I. Pyatnitskii, Sov. Phys. Solid State 6, 641–643 (1964)Google Scholar
  7. 7.
    C. Hwang, D. Hill, Phenomenological model for the new effect in dynamic polarization. Phys. Rev. Lett. 19(18), 1011–1014 (1967)ADSCrossRefGoogle Scholar
  8. 8.
    A. Abragam, M. Goldman, Principles of dynamic nuclear polarisation. Rep. Prog. Phys. 41(3), 395–467 (1978)ADSCrossRefGoogle Scholar
  9. 9.
    T. Maly, G.T. Debelouchina, V.S. Bajaj, K.-N. Hu, C.-G. Joo, M.L. Mak-Jurkauskas, J.R. Sirigiri, P.C.A. van der Wel, J. Herzfeld, R.J. Temkin, R.G. Griffin, Dynamic nuclear polarization at high magnetic fields. J. Chem. Phys. 128(5), 052211 (2008)Google Scholar
  10. 10.
    M. Duijvestijn, A quantitative investigation of the dynamic nuclear polarization effect by fixed paramagnetic centra of abundant and rare spins in solids at room temperature. Phys. B+C 138(1–2), 147–170 (1986)ADSCrossRefGoogle Scholar
  11. 11.
    C.T. Farrar, D.a. Hall, G.J. Gerfen, S.J. Inati, R.G. Griffin, Mechanism of dynamic nuclear polarization in high magnetic fields. J. Chem. Phys. 114(11), 4922 (2001)ADSCrossRefGoogle Scholar
  12. 12.
    Y. Hovav, A. Feintuch, S. Vega, Theoretical aspects of dynamic nuclear polarization in the solid state—the solid effect. J. Magn. Reson. (San Diego, CA: 1997) 207(2), 176–189 (2010)Google Scholar
  13. 13.
    Y. Hovav, A. Feintuch, S. Vega, Dynamic nuclear polarization assisted spin diffusion for the solid effect case. J. Chem. Phys. 134(7), 074509 (2011)Google Scholar
  14. 14.
    K.-N. Hu, G.T. Debelouchina, A.A. Smith, R.G. Griffin, Quantum mechanical theory of dynamic nuclear polarization in solid dielectrics. J. Chem. Phys. 134(12), 125105 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    Y. Hovav, A. Feintuch, S. Vega, Theoretical aspects of dynamic nuclear polarization in the solid state—the cross effect. J. Magn. Reson. 214, 29–41 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    A.A. Smith, B. Corzilius, A.B. Barnes, T. Maly, R.G. Griffin, Solid effect dynamic nuclear polarization and polarization pathways. J. Chem. Phys. 136(1), 015101 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    A. Karabanov, I. Kuprov, G.T.P. Charnock, van der A. Drift, L.J. Edwards, W. Kockenberger, On the accuracy of the state space restriction approximation for spin dynamics simulations. J. Chem. Phys. 135(8), 084106 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    A. Karabanov, A. van der Drift, L.J. Edwards, I. Kuprov, W. Kockenberger, Quantum mechanical simulation of solid effect dynamic nuclear polarisation using Krylov–Bogolyubov time averaging and a restricted state-space. Phys. Chem. Chem. Phys. 14(8), 2658–2668 (2012). doi: 10.1039/C2CP23233B Google Scholar
  19. 19.
    M. Borghini, Spin-temperature model of nuclear dynamic polarization using free radicals. Phys. Rev. Lett. 20(9), 419–421 (1968)ADSCrossRefGoogle Scholar
  20. 20.
    A. Schweiger, G. Jeschke, Principles of pulse electron paramagnetic resonance. Oxford University Press, Oxford, New York (2001)Google Scholar
  21. 21.
    A. Abragam, The principles of nuclear magnetism. (Oxford University Press, London, 1961)Google Scholar
  22. 22.
    C. Song, K.-N. Hu, C.-G. Joo, T.M. Swager, R.G. Griffin, TOTAPOL: a biradical polarizing agent for dynamic nuclear polarization experiments in aqueous media. J. Am. Chem. Soc. 128(35), 11385–11390 (2006)CrossRefGoogle Scholar
  23. 23.
    K.R. Thurber, W.-M. Yau, R. Tycko, Low-temperature dynamic nuclear polarization at 9.4 T with a 30 mW microwave source. J. Magn. Reson. (San Diego, CA: 1997) 204(2), 303–313 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Weizmann Institute of ScienceRehovotIsrael

Personalised recommendations