Advertisement

Applied Magnetic Resonance

, Volume 43, Issue 1–2, pp 107–117 | Cite as

Cross Polarization for Dissolution Dynamic Nuclear Polarization Experiments at Readily Accessible Temperatures 1.2 < T < 4.2 K

  • Aurélien Bornet
  • Roberto Melzi
  • Sami Jannin
  • Geoffrey Bodenhausen
Article

Abstract

Cross polarization can provide significant enhancements with respect to direct polarization of low-γ nuclei such as 13C. Substantial gains in sample throughput (shorter polarization times) can be achieved by exploiting shorter build-up times τDNP(1H) < τDNP(13C). To polarize protons rather than low-γ nuclei, nitroxide radicals with broad ESR resonances such as TEMPO are more appropriate than Trityl and similar carbon-based radicals that have narrow lines. With TEMPO as polarizing agent, the main Dynamic Nuclear Polarization (DNP) mechanism is thermal mixing (TM). Cross polarization makes it possible to attain higher polarization levels at 2.2 K than one can obtain with direct DNP of low-γ nuclei with TEMPO at 1.2 K, thus avoiding complex cryogenic technology.

Keywords

Cross Polarization Dynamic Nuclear Polarization Dynamic Nuclear Polarization Enhancement Dynamic Nuclear Polarization Experiment Trityl Radical 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors thank Dr. Jacques van der Klink for theoretical insights and Martial Rey for valuable technical assistance. This work was supported by the Swiss National Science Foundation, the Ecole Polytechnique Fédérale de Lausanne (EPFL), the Swiss Commission for Technology and Innovation (CTI), and the French CNRS.

References

  1. 1.
    A. Abragam, M. Goldman, Principles of dynamic nuclear polarization. Reports on Progress in Physics 2. 41(3), 395–467 (1978)Google Scholar
  2. 2.
    R. Sarkar, A. Comment, P.R. Vasos, S. Jannin, R. Gruetter, G. Bodenhausen, H. Hall, D. Kirik, V.P. Denisov, Proton NMR of 15N choline metabolites enhanced by dynamic nuclear polarization. J. Am. Chem. Soc. 131(44), 16014–16015 (2009)CrossRefGoogle Scholar
  3. 3.
    A. Comment, S. Jannin, J.N. Hyacinthe, P. Miéville, R. Sarkar, P. Ahuja, P.R. Vasos, X. Montet, F. Lazeyras, J.P. Vallée, P. Hautle, J.A. Konter, B. van den Brandt, J.P. Ansermet, R. Gruetter, G. Bodenhausen, Hyperpolarizing gases via dynamic nuclear polarization and sublimation. Phys. Rev. Lett. 105(1), 018104 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    P. Miéville, S. Jannin, L. Helm, G. Bodenhausen, Kinetics of yttrium-ligand complexation monitored using hyperpolarized 89Y as a model for gadolinium in contrast agents. J. Am. Chem. Soc. 132(14), 5006–5007 (2010)CrossRefGoogle Scholar
  5. 5.
    J.H. Ardenkjaer-Larsen, B. Fridlund, A. Gram, G. Hansson, L. Hansson, M.H. Lerche, R. Servin, M. Thaning, K. Golman, Increase in signal-to-noise ratio of >10,000 times in liquid-state NMR. Proc. Natl. Acad. Sci. USA 100(18), 10158–10163 (2003)ADSCrossRefGoogle Scholar
  6. 6.
    P. Miéville, S. Jannin, G. Bodenhausen, Relaxometry of insensitive nuclei: optimizing dissolution dynamic nuclear polarization. J. Magn. Reson. 210(1), 137–140 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    M. Carravetta, O.G. Johannessen, M.H. Levitt, Beyond the T1 limit: singlet nuclear spin states in low magnetic fields. Phys. Rev. Lett. 92(15), 153003–153007 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    P. Ahuja, R. Sarkar, S. Jannin, P.R. Vasos, G. Bodenhausen, Proton hyperpolarisation preserved in long-lived states. Chem. Comm. 46(43), 8192–8194 (2010)CrossRefGoogle Scholar
  9. 9.
    P.R. Vasos, A. Comment, R. Sarkar, P. Ahuja, S. Jannin, J.P. Ansermet, J.A. Konter, P. Hautle, B. van den Brandt, G. Bodenhausen, Long-lived states to sustain hyperpolarized magnetization. Proc. Natl. Acad. Sci. USA 106(44), 18475–18479 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    J.H. Ardenkjaer-Larsen, A.M. Leach, N. Clarke, J. Urbahn, D. Anderson, T.W. Skloss, Dynamic nuclear polarization polarizer for sterile use intent. NMR Biomed. 24(8), 927–932 (2011)CrossRefGoogle Scholar
  11. 11.
    M. Batel, M. Krajewski, K. Weiss, O. With, A. Däpp, A. Hunkeler, M. Gimersky, K.P. Pruessmann, P. Boesiger, B.H. Meier, S. Kozerke, M. Ernst, A multi-sample 94 GHz dissolution dynamic-nuclear-polarization system. J. Magn. Reson. 214, 166–174 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    S.R. Hartmann, E.L. Hahn, Nuclear double resonance in the rotating frame. Phys. Rev. 128(5), 2042 (1962)ADSzbMATHCrossRefGoogle Scholar
  13. 13.
    S. Jannin, A. Bornet, S. Colombo, G. Bodenhausen, Low-temperature cross-polarization in view of enhancing dissolution dynamic nuclear polarization in NMR. Chem. Phys. Lett. 517(4–6), 234–236 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    A.J. Pérez Linde, Application of cross polarisation techniques to dynamic nuclear polarisation dissolution experiments. School of Physics and Astronomy, University of Nottingham, Nottingham (2010)Google Scholar
  15. 15.
    D.A. Hall, D.C. Maus, G.J. Gerfen, S.J. Inati, L.R. Becerra, F.W. Dahlquist, R.G. Griffin, Polarization-enhanced NMR spectroscopy of biomolecules in frozen solution. Science 276(5314), 930–932 (1997)CrossRefGoogle Scholar
  16. 16.
    A. Comment, B. van den Brandt, K. Uffmann, F. Kurdzesau, S. Jannin, J.A. Konter, P. Hautle, W.T.H. Wenckebach, R. Gruetter, J.J. van der Klink, Design and performance of a DNP prepolarizer coupled to a rodent MRI scanner. Concepts Magn. Reson. B 31B(4), 255–269 (2007)CrossRefGoogle Scholar
  17. 17.
    F. Kurdzesau, B. van den Brandt, A. Comment, P. Hautle, S. Jannin, J.J. van der Klink, J.A. Konter, Dynamic nuclear polarization of small labelled molecules in frozen water–alcohol solutions. J. Phys. D 41(15), 155506 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    A. Abragam, M. Goldman, Principles of dynamic nuclear-polarization. Rep. Prog. Phys. 41(3), 395–467 (1978)ADSCrossRefGoogle Scholar
  19. 19.
    M.A. Kozhushner, B.N. Provotorov, On the theory of dynamic nuclear polarization in crystals. Sov. Phys. Sol. State 6(5), 1152–1154 (1964)Google Scholar
  20. 20.
    M. Borghini, Spin-temperature model of nuclear dynamic polarization using free radicals. Phys. Rev. Lett. 20(9), 419 (1968)ADSCrossRefGoogle Scholar
  21. 21.
    J. Heckmann, W. Meyer, E. Radtke, G. Reicherz, Electron spin resonance and its implication on the maximum nuclear polarization of deuterated solid target materials. Phys. Rev. B 74(13), 134418 (2006)ADSCrossRefGoogle Scholar
  22. 22.
    W. Boer, M. Borghini, K. Morimoto, T.O. Niinikoski, F. Udo, Dynamic polarization of protons, deuterons, and carbon-13 nuclei: thermal contact between nuclear spins and an electron spin–spin interaction reservoir. J. Low. Temp. 15(3), 249–267 (1974)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Aurélien Bornet
    • 1
  • Roberto Melzi
    • 2
  • Sami Jannin
    • 1
  • Geoffrey Bodenhausen
    • 1
    • 3
    • 4
    • 5
  1. 1.Institut des Sciences et Ingénierie ChimiquesEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
  2. 2.Bruker Italia S.r.lMilanItaly
  3. 3.Département de ChimieEcole Normale SupérieureParis Cedex 05France
  4. 4.Université Pierre-et-Marie CurieParisFrance
  5. 5.UMR 7203CNRS/UPMC/ENSParisFrance

Personalised recommendations