Advertisement

Applied Magnetic Resonance

, Volume 43, Issue 1–2, pp 81–90 | Cite as

High-Temperature Dynamic Nuclear Polarization Enhanced Magic-Angle-Spinning NMR

  • Ümit Akbey
  • Arne H. Linden
  • Hartmut Oschkinat
Article

Abstract

Dynamic nuclear polarization (DNP) transfers electron spin-polarization to nuclear spins in close proximity, increasing sensitivity by two-to-three orders of magnitude. This enables nuclear magnetic resonance (NMR) experiments on samples with low concentrations of analyte. The requirement of using cryogenic temperatures in DNP-enhanced solid-state NMR (ssNMR) experiments may impair the resolution and hence limit its broad application to biological systems. In this work, we introduce a “High-Temperature DNP” approach, which aims at increasing spectral resolution by performing experiments at temperatures of around 180 K instead of ~100 K. By utilizing the extraordinary enhancements obtained on deuterated proteins, still sufficiently large DNP enhancements of 11–18 are obtained for proton and carbon, respectively. We recorded high sensitivity 2D 13C–13C spectra in ~9 min with higher resolution than at 100 K, which has similar resolution to the one obtained at room temperature for some favorable residues.

Keywords

Nuclear Magnetic Resonance Dynamic Nuclear Polarization Room Temperature Spectrum Dynamic Nuclear Polarization Enhancement Deuterated Sample 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We acknowledge Sascha Lange, Trent W. Franks and Barth-Jan van Rossum for helpful discussions. Anne Diehl and Kristina Rehbein are also acknowledged for the preparation of the SH3 samples. This work was funded by the Deutsche Forschungsgemeinschaft (grant 05106/12-1 of the DIP program) and the European Union Seventh Framework programs (FP7/2007-2013) under the grant agreements 261863 (Bio-NMR).

Supplementary material

723_2012_357_MOESM1_ESM.eps (660 kb)
Supplementary material 1 (EPS 660 kb)
723_2012_357_MOESM2_ESM.eps (782 kb)
Supplementary material 2 (EPS 782 kb)

References

  1. 1.
    P.J. Judge, A. Watts, Curr. Opin. Chem. Biol. 15, 690–695 (2011)CrossRefGoogle Scholar
  2. 2.
    A.W. Overhauser, Phys. Rev. 92, 411–415 (1953)ADSMATHCrossRefGoogle Scholar
  3. 3.
    T.R. Carver, C.P. Slichter, Phys. Rev. 92, 212–213 (1953)ADSCrossRefGoogle Scholar
  4. 4.
    T.R. Carver, C.P. Slichter, Phys. Rev. 102, 975–980 (1956)ADSCrossRefGoogle Scholar
  5. 5.
    M. Rosay, J.C. Lansing, K.C. Haddad, W.W. Bachovchin, J. Herzfeld, R.J. Temkin, R.G. Griffin, J. Am. Chem. Soc. 125, 13626–13627 (2003)CrossRefGoogle Scholar
  6. 6.
    V.S. Bajaj, M.L. Mak-Jurkauskas, M. Belenky, J. Herzfeld, R.G. Griffin, Proc. Natl. Acad. Sci. USA 106, 9244–9249 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    A.H. Linden, S. Lange, W.T. Franks, U. Akbey, E. Specker, B.J. van Rossum, H. Oschkinat, J. Am. Chem. Soc. 133, 19266–19269 (2011)CrossRefGoogle Scholar
  8. 8.
    U. Akbey, W.T. Franks, A. Linden, S. Lange, R.G. Griffin, B.J. van Rossum, H. Oschkinat, Angew. Chem. Int. Ed. Engl. 49, 7803–7806 (2010)CrossRefGoogle Scholar
  9. 9.
    M.J. Bayro, G.T. Debelouchina, M.T. Eddy, N.R. Birkett, C.E. MacPhee, M. Rosay, W.E. Maas, C.M. Dobson, R.G. Griffin, J. Am. Chem. Soc. 133, 13967–13974 (2011)CrossRefGoogle Scholar
  10. 10.
    G.T. Debelouchina, M.J. Bayro, P.C. van der Wel, M.A. Caporini, A.B. Barnes, M. Rosay, W.E. Maas, R.G. Griffin, Phys. Chem. Chem. Phys. 12, 5911–5919 (2010)CrossRefGoogle Scholar
  11. 11.
    M. Afeworki, R.A. Mckay, J. Schaefer, Mater. Sci. Eng. A 162, 221–228 (1993)CrossRefGoogle Scholar
  12. 12.
    V. Vitzthum, F. Borcard, S. Jannin, M. Morin, P. Mieville, M.A. Caporini, A. Sienkiewicz, S. Gerber-Lemaire, G. Bodenhausen, ChemPhysChem 12, 2929–2932 (2011)CrossRefGoogle Scholar
  13. 13.
    A. Lesage, M. Lelli, D. Gajan, M.A. Caporini, V. Vitzthum, P. Mieville, J. Alauzun, A. Roussey, C. Thieuleux, A. Mehdi, G. Bodenhausen, C. Coperet, L. Emsley, J. Am. Chem. Soc. 132, 15459–15461 (2010)CrossRefGoogle Scholar
  14. 14.
    M. Lelli, D. Gajan, A. Lesage, M.A. Caporini, V. Vitzthum, P. Mieville, F. Heroguel, F. Rascon, A. Roussey, C. Thieuleux, M. Boualleg, L. Veyre, G. Bodenhausen, C. Coperet, L. Emsley, J. Am. Chem. Soc. 133, 2104–2107 (2011)CrossRefGoogle Scholar
  15. 15.
    K. Golman, R. in’t Zandt, M. Thaning, Proc. Nat. Acad. Sci. USA 103, 11270–11275 (2006)ADSCrossRefGoogle Scholar
  16. 16.
    S.J. Kohler, Y. Yen, J. Wolber, A.P. Chen, M.J. Albers, R. Bok, V. Zhang, J. Tropp, S. Nelson, D.B. Vigneron, J. Kurhanewicz, R.E. Hurd, Magn. Reson. Med. 58, 65–69 (2007)CrossRefGoogle Scholar
  17. 17.
    M. Marjanska, I. Iltis, A.A. Shestov, D.K. Deelchand, C. Nelson, K. Ugurbil, P.G. Henry, J. Magn. Reson. 206, 210–218 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    R.G. Griffin, T.F. Prisner, Phys. Chem. Chem. Phys. 12, 5737–5740 (2010)CrossRefGoogle Scholar
  19. 19.
    T. Maly, G.T. Debelouchina, V.S. Bajaj, K.N. Hu, C.G. Joo, M.L. Mak-Jurkauskas, J.R. Sirigiri, P.C. van der Wel, J. Herzfeld, R.J. Temkin, R.G. Griffin, J. Chem. Phys. 128, 052211 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    C. Song, K.N. Hu, C.G. Joo, T.M. Swager, R.G.J. Griffin, Am. Chem. Soc. 128, 11385–11390 (2006)CrossRefGoogle Scholar
  21. 21.
    S. Lange, A.H. Linden, U. Akbey, W. Trent Franks, N.M. Loening, B.J.v. Rossum, H. Oschkinat. J. Magn. Reson. 216, 209–212 (2012)Google Scholar
  22. 22.
    L.R. Becerra, G.J. Gerfen, B.F. Bellew, J.A. Bryant, D.A. Hall, S.J. Inati, R.T. Weber, S. Un, T.F. Prisner, A.E. Mcdermott, K.W. Fishbein, K.E. Kreischer, R.J. Temkin, D.J. Singel, R.G. Griffin, J. Magn. Reson., Ser. A 117, 28–40 (1995)CrossRefGoogle Scholar
  23. 23.
    A.H. Linden, W.T. Franks, U. Akbey, S. Lange, B.J. van Rossum, H. Oschkinat, J. Biomol. NMR 51, 283–292 (2011)CrossRefGoogle Scholar
  24. 24.
    C.G. Joo, K.N. Hu, J.A. Bryant, R.G. Griffin, J. Am. Chem. Soc. 128, 9428–9432 (2006)CrossRefGoogle Scholar
  25. 25.
    C.G. Joo, A. Casey, C.J. Turner, R.G. Griffin, J. Am. Chem. Soc. 131, 12–13 (2009)CrossRefGoogle Scholar
  26. 26.
    V. Chevelkov, K. Rehbein, A. Diehl, B. Reif, Angew. Chem. Int. Ed. 45, 3878–3881 (2006)CrossRefGoogle Scholar
  27. 27.
    U. Akbey, S. Lange, W.T. Franks, R. Linser, K. Rehbein, A. Diehl, B.J. van Rossum, B. Reif, H. Oschkinat, J. Biomol. NMR 46, 67–73 (2010)CrossRefGoogle Scholar
  28. 28.
    T. Iijima, Cryobiology 36, 165–173 (1998)CrossRefGoogle Scholar
  29. 29.
    U. Akbey, F. Camponeschi, B.J. van Rossum, H. Oschkinat, ChemPhysChem 12, 2092–2096 (2011)CrossRefGoogle Scholar
  30. 30.
    W. Doster, Biochim. Biophys. Acta 1804, 3–14 (2010)CrossRefGoogle Scholar
  31. 31.
    K. Tompa, P. Bínki, M. Bokor, P. Kamasa, G.R. Lasanda, P. Tompa, Biophys. J. 96, 2789–2798 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.NMR Supported Structural Biology, Leibniz-Institut für Molekulare Pharmakologie (FMP)BerlinGermany

Personalised recommendations