Advertisement

Applied Magnetic Resonance

, Volume 43, Issue 1–2, pp 119–128 | Cite as

Temperature Dependence of the Proton Overhauser DNP Enhancements on Aqueous Solutions of Fremy’s Salt Measured in a Magnetic Field of 9.2 T

  • Marat Gafurov
  • Vasyl Denysenkov
  • Mark J. Prandolini
  • Thomas F. PrisnerEmail author
Article

Abstract

The temperature dependence of the water-proton dynamic nuclear polarization (DNP) enhancement from Fremy’s salt nitroxide radicals was measured in a magnetic field of 9.2 T (corresponding to 260 GHz microwave (MW) and 392 MHz NMR frequencies) in the temperature range of 15–65 °C. The temperature could be determined directly from the proton NMR line shift of the sample. Very high DNP enhancements of −38 (signal integral) or −81 (peak intensity) could be achieved with a high-power gyrotron MW source. The experimental findings are compared with classical Overhauser theory for liquids, which is based on the translational and rotational motion of the molecules and with molecular dynamics calculations of the coupling factor.

Keywords

Electron Paramagnetic Resonance Coupling Factor Dynamic Nuclear Polarization Nuclear Magnetic Resonance Signal Saturation Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank Bernhard Thiem and Burkhard Endeward, for experimental support and Dominik Margraf for the synthesis of 15N Fremy’s Salt. We are indebted to Deniz Sezer for discussion and theoretical support. Frank Engelke, Alexander Krahn and Thorsten Marquartsen (Bruker BioSpin) are thanked for technical support. Financial support by the design study project BIO-DNP (European Commission) and the German–Israel Project DIP OS 106/12-1 (German Research Society) are gratefully acknowledged.

References

  1. 1.
    W. Köckenberger, T.F. Prisner, Appl. Magn. Reson. 34, 213 (2008)CrossRefGoogle Scholar
  2. 2.
    R.G. Griffin, T.F. Prisner, Phys. Chem. Chem. Phys. 22, 5725 (2010)Google Scholar
  3. 3.
    V.A. Atsarkin, J. Phys. 324, 012003 (2011)CrossRefGoogle Scholar
  4. 4.
    L.R. Becerra, G.J. Gerfen, R.J. Temkin, D.J. Singel, R.G. Griffin, Phys. Rev. Lett. 71, 3561 (1993)ADSCrossRefGoogle Scholar
  5. 5.
    J.H. Ardenkjaer-Larsen, B. Fridlund, A. Gram, G. Hansson, L. Hansson, M.H. Lerche, R. Servin, M. Thaning, K. Golman, Proc. Natl. Acad. Sci. USA 100, 10158 (2003)ADSCrossRefGoogle Scholar
  6. 6.
    A.W. Overhauser, Phys. Rev. 92, 411 (1953)ADSzbMATHCrossRefGoogle Scholar
  7. 7.
    K.H. Hausser, D. Stehlik, Adv. Magn. Reson. 3, 79 (1968)Google Scholar
  8. 8.
    A. Abragam, The Principles of Nuclear Magnetism, (Clarendon Press, Oxford, 1961)Google Scholar
  9. 9.
    W. Müller-Warmuth, K. Meise-Gresch, Adv. Magn. Reson. 11, 1 (1983)Google Scholar
  10. 10.
    R.A. Dweck, R.E. Richards, D. Taylor, Ann. Rev. NMR. Spectrosc. 2, 293 (1969)CrossRefGoogle Scholar
  11. 11.
    J. Potenza, Adv. Mol. Relax. Proc. 4, 229 (1972)CrossRefGoogle Scholar
  12. 12.
    R.A. Wind, M.J. Duuvestun, C. Van Der Lugt, A. Manenschun, J. Vriend, Prog. NMR Spectrosc. 17, 33 (1985)CrossRefGoogle Scholar
  13. 13.
    J.H. Freed, J. Chem. Phys. 68, 4034 (1978)ADSCrossRefGoogle Scholar
  14. 14.
    E.V. Kryukov, K.J. Pike, T.K.Y. Tam, M.E. Newton, M.E. Smith, R. Dupree, Phys. Chem. Chem. Phys. 13, 4372 (2011)CrossRefGoogle Scholar
  15. 15.
    P.J.M. van Bentum, G.H.A. van der Heijden, J.A. Villanueva-Garibay, A.P.M. Kentgens, Phys. Chem. Chem. Phys. 13, 17831 (2011)CrossRefGoogle Scholar
  16. 16.
    B.D. Armstrong, S. Han, J. Chem. Phys. 127, 104508 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    B. Borah, R.G. Bryant, J. Chem. Phys. 75, 3297 (1981)ADSCrossRefGoogle Scholar
  18. 18.
    E. Goldammer, W. Kreysch, H. Wenzel, J. Sol. Chem. 7, 197 (1978)CrossRefGoogle Scholar
  19. 19.
    P. Höfer, G. Parigi, C. Luchinat, P. Carl, G. Guthausen, M. Reese, T. Carlomagno, C. Griesinger, M. Bennati, J. Am. Chem. Soc. 130, 3254 (2008)CrossRefGoogle Scholar
  20. 20.
    M. Bennati, C. Luchinat, G. Parigi, M.-T. Türke, Phys. Chem. Chem. Phys. 12, 5902 (2010)CrossRefGoogle Scholar
  21. 21.
    D. Sezer, M.J. Prandolini, T.F. Prisner, Phys. Chem. Chem. Phys. 11, 6626 (2009)CrossRefGoogle Scholar
  22. 22.
    V.P. Denysenkov, M.J. Prandolini, M. Gafurov, D. Sezer, B. Endeward, T.F. Prisner, Phys. Chem. Chem. Phys. 12, 5786 (2010)CrossRefGoogle Scholar
  23. 23.
    V.P. Denysenkov, M.J. Prandolini, A. Krahn, M. Gafurov, B. Endeward, T.F. Prisner, Appl. Magn. Reson. 34, 289 (2008)CrossRefGoogle Scholar
  24. 24.
    M.J. Prandolini, V.P. Denysenkov, M. Gafurov, B. Endeward, T.F. Prisner, J. Am. Chem. Soc. 131, 6090 (2009)CrossRefGoogle Scholar
  25. 25.
    Q. Teng, Structural Biology: Practical NMR Applications (Springer, New York, 2005), p. 19Google Scholar
  26. 26.
    T. Wu, K.R. Kendell, J.P. Felmlee, B.D. Lewis, R.L. Ehman, Med. Phys. 27, 221 (2000)CrossRefGoogle Scholar
  27. 27.
    D. Sezer, M. Gafurov, M.J. Prandolini, V.P. Denysenkov, T.F. Prisner, Phys. Chem. Chem. Phys. 11, 6638 (2009)CrossRefGoogle Scholar
  28. 28.
    M.-T. Türke, I. Tkach, M. Reese, P. Höfer, M. Bennati, Phys. Chem. Chem. Phys. 12, 5893 (2010)CrossRefGoogle Scholar
  29. 29.
    M.M. Hertel, V.P. Denysenkov, M. Bennati, T.F. Prisner, Magn. Res. Chem. 43, 248 (2005)CrossRefGoogle Scholar
  30. 30.
    R. Wind, H. Lock, M. Mehring, Chem.Phys.Lett. 141, 283 (1987)Google Scholar
  31. 31.
    E. Belorizky, W. Gorecki, M. Jeannin, P.H. Fries, P. Maldivi, E. Gout, Chem. Phys. Lett. 175, 579 (1990)ADSCrossRefGoogle Scholar
  32. 32.
    B. Bales, M. Peric, J. Phys. Chem. B 101, 8707 (1997)CrossRefGoogle Scholar
  33. 33.
    M.-T. Türke, G. Parigi, C. Luchinat, M. Bennati, Phys. Chem. Chem. Phys. 14, 502 (2012)CrossRefGoogle Scholar
  34. 34.
    M.P. Eastman, G.V. Bruno, J.H. Freed, J. Chem. Phys. 52, 2511 (1970)ADSCrossRefGoogle Scholar
  35. 35.
    S.A. Goldman, G.V. Bruno, C.F. Polnaszek, J.H. Freed, J. Chem. Phys. 56, 716 (1972)ADSCrossRefGoogle Scholar
  36. 36.
    W. Froncisz, T.G. Camenisch, J.J. Ratke, J.R. Anderson, W.K. Subczyski, R.A. Strangeway, J.H. Sibradas, J.S. Hyde, J. Magn. Reson. 193, 297 (2008)ADSCrossRefGoogle Scholar
  37. 37.
    M.J. Prandolini, V. Denysenkov, M. Gafurov, S. Lyubenova, B. Endeward, M. Bennati, T. Prisner, Appl. Magn. Reson. 34, 399 (2008)CrossRefGoogle Scholar
  38. 38.
    M. Dutka, R.J. Gurbiel, J. Kozioł, W. Froncisz, J. Magn. Res. 170, 220 (2004)ADSCrossRefGoogle Scholar
  39. 39.
    R.E. Collin, Foundautions for Microwave Engineering, (McGraw-Hill, 1992), pp. 505–506Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Marat Gafurov
    • 1
    • 2
  • Vasyl Denysenkov
    • 1
  • Mark J. Prandolini
    • 1
    • 3
  • Thomas F. Prisner
    • 1
    Email author
  1. 1.Institute of Physical and Theoretical Chemistry and Center for Biomolecular Magnetic ResonanceGoethe UniversityFrankfurt am MainGermany
  2. 2.Institute of PhysicsKazan Federal UniversityKazanRussia
  3. 3.Helmholtz-Institut JenaJenaGermany

Personalised recommendations