Applied Magnetic Resonance

, Volume 43, Issue 1–2, pp 139–146 | Cite as

Liquid State DNP on Metabolites at 260 GHz EPR/400 MHz NMR Frequency

  • Jan G. Krummenacker
  • Vasyl P. Denysenkov
  • Thomas F. PrisnerEmail author


We have performed liquid state (“Overhauser”) dynamic nuclear polarization (DNP) experiments at high magnetic field (9.2 T, corresponding to 260 GHz EPR and 400 MHz 1H-NMR resonance frequency) on solutions of pyruvate, lactate and alanine in water with TEMPOL nitroxide radicals as polarizing agent. We present experimental results showing DNP enhancement on metabolite methyl protons, varying for the different target metabolites. It is shown that the enhancements are achieved through direct coupling between the radicals and the target metabolites in solution, i.e., the effect is not mediated by the solvent water protons. The coupling factors between the TEMPOL radicals and the metabolites observed are a factor of 3–5 smaller compared to direct polarization transfer from TEMPOL to water protons.


Methyl Proton High Magnetic Field Coupling Factor Dynamic Nuclear Polarization Water Proton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the DIP program from the German Research Council (DFG) and the Center for Biomolecular Magnetic Resonance, Frankfurt. We gratefully acknowledge technical support from Dr. A. Krahn and Dr. F. Engelke from Bruker, Bernhard Thiem and the mechanical workshop of the Institute of Physical Chemistry.


  1. 1.
    A.W. Overhauser, Phys. Rev. 92, 411–415 (1953)ADSzbMATHCrossRefGoogle Scholar
  2. 2.
    T.R. Carver, C.P. Slichter, Phys. Rev. 92, 212–213 (1953)ADSCrossRefGoogle Scholar
  3. 3.
    T.R. Carver, C.P. Slichter, Phys. Rev. 102, 975–980 (1956)ADSCrossRefGoogle Scholar
  4. 4.
    L.R. Becerra, G.J. Gerfen, R.J. Temkin, D.J. Singel, R.G. Griffin, Phys. Rev. Lett. 71, 3561–3564 (1993)ADSCrossRefGoogle Scholar
  5. 5.
    J.H. Ardenkjaer-Larsen, B. Fridlund, A. Gram, G. Hansson, L. Hansson, M.H. Lerche, R. Servin, M. Thaning, K. Golman, Proc. Natl. Acad. Sci. USA 100, 10158–10163 (2003)ADSCrossRefGoogle Scholar
  6. 6.
    K. Golman, R.I. Zandt, M. Lerche, R. Pehrson, J.H. Ardenkjaer-Larsen, Cancer Res. 66, 10855–10860 (2006)CrossRefGoogle Scholar
  7. 7.
    C. Song, K.-N. Hu, C.-G. Joo, T.M. Swager, R.G. Griffin, J. Am. Chem. Soc. 128, 11385–11390 (2006)CrossRefGoogle Scholar
  8. 8.
    M. Reese, D. Lennartz, T. Marquardsen, P. Höfer, A. Tavernier, P. Carl, T. Schippmann, M. Bennati, T. Carlomagno, F. Engelke, C. Griesinger, Appl. Magn. Reson. 34, 301–311 (2008)CrossRefGoogle Scholar
  9. 9.
    S. Hu, M. Zhu, H.A.I. Yoshihara, D.M. Wilson, K.R. Keshari, P. Shin, G. Reed, C. von Morze, R. Bok, P.E.Z. Larson, J. Kurhanewicz, D.B. Vigneron, Magn. Reson. Imaging 29, 1035–1040 (2011)CrossRefGoogle Scholar
  10. 10.
    P.J.M. van Bentum, G.H.A. van der Heijden, J.A. Villanueva-Garibay, A.P.M. Kentgens, Phys. Chem. Chem. Phys. 13, 17831–17840 (2011)CrossRefGoogle Scholar
  11. 11.
    E.V. Kryukov, K.J. Pike, T.K.Y. Tam, M.E. Newton, M.E. Smith, R. Dupree, Phys. Chem. Chem. Phys. 13, 4372–4380 (2011)CrossRefGoogle Scholar
  12. 12.
    P. Höfer, G. Parigi, C. Luchinat, P. Carl, G. Guthausen, M. Reese, T. Carlomagno, C. Griesinger, M. Bennati, J. Am. Chem. Soc. 130, 3254–3255 (2008)CrossRefGoogle Scholar
  13. 13.
    M.-T. Turke, I. Tkach, M. Reese, P. Hofer, M. Bennati, Phys. Chem. Chem. Phys. 12, 5893–5901 (2010)CrossRefGoogle Scholar
  14. 14.
    V. Denysenkov, M.J. Prandolini, M. Gafurov, D. Sezer, B. Endeward, T.F. Prisner, Phys. Chem. Chem. Phys. 12, 5786–5790 (2010)CrossRefGoogle Scholar
  15. 15.
    M.J. Prandolini, V.P. Denysenkov, M. Gafurov, B. Endeward, T.F. Prisner, J. Am. Chem. Soc. 131, 6090–6092 (2009)CrossRefGoogle Scholar
  16. 16.
    M.J. Prandolini, V.P. Denysenkov, M. Gafurov, S. Lyubenova, B. Endeward, M. Bennati, T.F. Prisner, Appl. Magn. Reson. 34, 399–407 (2008)CrossRefGoogle Scholar
  17. 17.
    K.H. Hausser, D. Stehlik, Adv. Magn. Reson. 3, 79–139 (1968)Google Scholar
  18. 18.
    V.P. Denysenkov, M.J. Prandolini, A. Krahn, M. Gafurov, B. Endeward, T.F. Prisner, Appl. Magn. Reson. 34, 289–299 (2008)CrossRefGoogle Scholar
  19. 19.
    M. Marjańska, I. Iltis, A.A. Shestov, D.K. Deelchand, C. Nelson, K. Uğurbil, P.-G. Henry, J. Magn. Reson. 206, 210–218 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    K. Tsai, H. Dorn, Appl. Magn. Reson. 1, 231–254 (1990)CrossRefGoogle Scholar
  21. 21.
    J.H. Freed, J. Chem. Phys. 68, 4034–4037 (1978)ADSCrossRefGoogle Scholar
  22. 22.
    D. Sezer, M.J. Prandolini, T.F. Prisner, Phys. Chem. Chem. Phys. 11, 6626–6637 (2009)CrossRefGoogle Scholar
  23. 23.
    K.-H. Herrmann, A. Pohlmeier, D. Gembris, H. Vereecken, J. Hydrol. 267, 244–257 (2002)CrossRefGoogle Scholar
  24. 24.
    P. Delahay, J. Am. Chem. Soc. 74, 3506–3508 (1952)CrossRefGoogle Scholar
  25. 25.
    B.D. Armstrong, S. Han, J. Am. Chem. Soc. 131, 4641–4647 (2009)CrossRefGoogle Scholar
  26. 26.
    Y. Ayant, E. Belorizky, J. Aluzon, J. Gallice, J. Phys. France 36, 991–1004 (1975)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Jan G. Krummenacker
    • 1
  • Vasyl P. Denysenkov
    • 1
  • Thomas F. Prisner
    • 1
    Email author
  1. 1.Institute of Physical and Theoretical Chemistry, Center of Biomolecular Magnetic ResonanceGoethe University FrankfurtFrankfurtGermany

Personalised recommendations