Advertisement

Applied Magnetic Resonance

, Volume 43, Issue 1–2, pp 289–297 | Cite as

Measurement of Arterial Input Function in Hyperpolarized 13C Studies

  • Małgorzata Marjańska
  • Thomas Z. Teisseyre
  • Nicholas W. Halpern-Manners
  • Yi Zhang
  • Isabelle Iltis
  • Vikram Bajaj
  • Kamil Ugurbil
  • Alexander Pines
  • Pierre-Gilles Henry
Article

Abstract

Recently, hyperpolarized substrates generated through dynamic nuclear polarization have been introduced to study in vivo metabolism. Injection of hyperpolarized [1-13C] pyruvate, the most widely used substrate, allows detection of time courses of [1-13C] pyruvate and its metabolic products, such as [1-13C] lactate and 13C-bicarbonate, in various organs. However, quantitative metabolic modeling of in vivo data to measure specific metabolic rates remains challenging without measuring the input function. In this study, we demonstrate that the input function of [1-13C] pyruvate can be measured in vivo in the rat carotid artery using an implantable coil.

Keywords

Pyruvate Arterial Input Function Dynamic Nuclear Polarization Magnetic Resonance Spectroscopic Imaging Bench Experiment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank Manda Vollmers and Emily Colonna, and William Manders from Oxford Instruments Biotools for technical support. The authors thank Dr. Josef Granwehr for helpful discussions. This work was supported by the National Institutes of Health: R01 NS38672, P41 RR008079, P41 EB015894, and the W.M. Keck Foundation and by the Director, Office of Science, Office of Basis Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Funding for NMR instrumentation was provided by the Office of the Vice President for Research, the Medical School, the College of Biological Science, NIH, NSF, and the Minnesota Medical Foundation.

References

  1. 1.
    K. Golman, J.H. Ardenaer-Larsen, J.S. Petersson, S. Mansson, I. Leunbach, Proc. Natl. Acad. Sci. USA 100, 10435–10439 (2003)ADSCrossRefGoogle Scholar
  2. 2.
    K. Golman, R. in’t Zandt, M. Thaning, Proc. Natl. Acad. Sci. USA 103, 11270–11275 (2006)ADSCrossRefGoogle Scholar
  3. 3.
    K. Golman, R. in’t Zandt, M. Lerche, R. Pehrson, J.H. Ardenkjaer-Larsen, Cancer Res. 66, 10855–10860 (2006)CrossRefGoogle Scholar
  4. 4.
    A.P. Chen, M.J. Albers, C.H. Cunningham, S.J. Kohler, Y.F. Yen, R.E. Hurd, J. Tropp, R. Bok, J.M. Pauly, S.J. Nelson, J. Kurhanewicz, D.B. Vigneron, Magn. Reson. Med. 58, 1099–1106 (2007)CrossRefGoogle Scholar
  5. 5.
    S.E. Day, M.I. Kettunen, F.A. Gallagher, D.E. Hu, M. Lerche, J. Wolber, K. Golman, J.H. Ardenkjaer-Larsen, K.M. Brindle, Nature Med. 13, 1521 (2007)CrossRefGoogle Scholar
  6. 6.
    C.S. Ward, H.S. Venkatesh, M.M. Chaumeil, A.H. Brandes, M. Vancriekinge, H. Dafni, S. Sukumar, S.J. Nelson, D.B. Vigneron, J. Kurhanewicz, C.D. James, D.A. Haas-Kogan, S.M. Ronen, Cancer Res. 70, 1296–1305 (2010)CrossRefGoogle Scholar
  7. 7.
    K.R. Keshari, J. Kurhanewicz, R.E. Jeffries, D.M. Wilson, B.J. Dewar, M. Van Criekinge, M. Zierhut, D.B. Vigneron, J.M. Macdonald, Magn. Reson. Med. 63, 322–329 (2010)CrossRefGoogle Scholar
  8. 8.
    M.L. Zierhut, Y.F. Yen, A.P. Chen, R. Bok, M.J. Albers, V. Zhang, J. Tropp, I. Park, D.B. Vigneron, J. Kurhanewicz, R.E. Hurd, S.J. Nelson, J. Magn. Reson. 202, 85–92 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    T. Harris, G. Eliyahu, L. Frydman, H. Degani, Proc. Natl. Acad. Sci. USA 106, 18131–18136 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    M. Marjanska, I. Iltis, A.A. Shestov, D.K. Deelchand, C. Nelson, K. Ugurbil, P.G. Henry, J. Magn. Reson. 206, 210–218 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    T. Xu, D. Mayer, M. Gu, Y.F. Yen, S. Josan, J. Tropp, A. Pfefferbaum, R. Hurd, D. Spielman, NMR Biomed. 24, 997–1005 (2011)CrossRefGoogle Scholar
  12. 12.
    A. Comment, B. van den Brandt, K. Uffmann, F. Kurdzesau, S. Jannin, J.A. Konter, P. Hautle, W.T.H. Wenckebach, R. Gruetter, J.J. van der Klink, Concept Magn. Reson. B 31B, 255–269 (2007)CrossRefGoogle Scholar
  13. 13.
    G. Adriany, R. Gruetter, J. Magn. Reson. 125, 178–184 (1997)ADSCrossRefGoogle Scholar
  14. 14.
    A.J. Shaka, J. Keeler, T. Frenkiel, R. Freeman, J. Magn. Reson. 52, 335–338 (1983)Google Scholar
  15. 15.
    K.K.-C. Leung, W.W. Lam, A.P. Chen, ISMRM (Honolulu, USA, 2009), p. 2432Google Scholar
  16. 16.
    N.B. Everett, B. Simmons, E.P. Lasher, Circ. Res. 4, 419–424 (1956)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Małgorzata Marjańska
    • 1
  • Thomas Z. Teisseyre
    • 2
    • 3
  • Nicholas W. Halpern-Manners
    • 2
    • 4
  • Yi Zhang
    • 1
  • Isabelle Iltis
    • 1
  • Vikram Bajaj
    • 2
    • 4
  • Kamil Ugurbil
    • 1
  • Alexander Pines
    • 2
    • 4
  • Pierre-Gilles Henry
    • 1
  1. 1.Department of Radiology and Center for Magnetic Resonance ResearchUniversity of MinnesotaMinneapolisUSA
  2. 2.Department of ChemistryUniversity of California at BerkeleyBerkeleyUSA
  3. 3.Joint Graduate Group in BioengineeringUCSF and UC BerkeleySan FranciscoUSA
  4. 4.Materials Sciences DivisionE. O. Lawrence Berkeley National LaboratoryBerkeleyUSA

Personalised recommendations