Applied Magnetic Resonance

, Volume 43, Issue 1–2, pp 207–221 | Cite as

Evaluation of a Shuttle DNP Spectrometer by Calculating the Coupling and Global Enhancement Factors of l-Tryptophan

  • Philip Lottmann
  • Thorsten Marquardsen
  • Alexander Krahn
  • Andreas Tavernier
  • Peter Höfer
  • Marina Bennati
  • Frank EngelkeEmail author
  • Christian GriesingerEmail author


A liquid state shuttle dynamic nuclear polarization (DNP) spectrometer is presented, featuring several technical modifications that increase stability and improve reproducibility. For the protons of l-tryptophan, the signal enhancement and the DNP spin properties, such as relaxation, were measured and compared with each other. The calculated coupling factors suggest that the proton accessibility for the polarizer molecule has an important influence on the DNP enhancement. In general, short proton spin longitudinal relaxation times without radical reduce the detectable enhancement by decreasing the leakage factor and increasing the relaxation losses during the course of the sample transfer. The usage of a global enhancement factor gives a more complete overview of the capabilities for the described experimental setup. Global enhancements of up to −4.2 for l-tryptophan protons are found compared to pure Boltzmann enhancements of up to −2.4.


Coupling Factor Dynamic Nuclear Polarization Magic Angle Spin Spin Lattice Relaxation Time Relaxation Loss 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We would like to acknowledge M.T. Türke for helpful discussion and T. Michael Sabo for carefully reading the manuscript. This work was supported by the Max Planck Society (to M.B. and C.G.) and by Bio-NMR project 261863 (to C.G. and F.E.).


  1. 1.
    T. Prisner, W. Kockenberger, Appl. Magn. Reson. 34, 213 (2008)CrossRefGoogle Scholar
  2. 2.
    J.H. Ardenkjaer-Larsen, B. Fridlund, A. Gram, G. Hansson, L. Hansson, M.H. Lerche, R. Servin, M. Thaning, K. Golman, Proc. Natl. Acad. Sci. USA 100, 10158 (2003)ADSCrossRefGoogle Scholar
  3. 3.
    K. Golman, R. Zandt, M. Thanning, Proc. Natl. Acad. USA 103, 11270 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    S.E. Day, M.I. Kettunen, F.A. Gallagher, D.-E. Hu, M. Lerche, J. Wolber, K. Golman, J.H. Ardenkjaer-Larsen, K.M. Brindle, Nat. Med. 13, 1382 (2007)Google Scholar
  5. 5.
    R.G. Griffin, T.F. Prisner, Phys. Chem. Chem. Phys. 12, 5737 (2010)CrossRefGoogle Scholar
  6. 6.
    A.B. Barnes, B. Corzilius, M.L. Mak-Jurkauskas, L.B. Andreas, S. Bajaj, Y. Matsuki, M.L. Belenky, J. Lugtenburg, J.R. Sirigiri, R.J. Temkin, J. Herzfeld, R.G. Griffin, Phys. Chem. Chem. Phys. 12, 5861 (2010)CrossRefGoogle Scholar
  7. 7.
    S. Bowen, C. Hilty, Phys. Chem. Chem. Phys. 12, 5766 (2010)CrossRefGoogle Scholar
  8. 8.
    V. Denysenkov, M.J. Prandolini, M. Gafurov, D. Sezer, B. Endeward, T.F. Prisner, Phys. Chem. Chem. Phys. 12, 5786 (2010)CrossRefGoogle Scholar
  9. 9.
    A. Krahn, P. Lottmann, T. Marquardsen, A. Tavernier, M.-T. Türke, M. Reese, A. Leonov, M. Bennati, P. Höfer, F. Engelke, C. Griesinger, Phys. Chem. Chem. Phys. 12, 5830 (2010)CrossRefGoogle Scholar
  10. 10.
    A.W. Overhauser, Phys. Rev. 92, 476 (1953)CrossRefGoogle Scholar
  11. 11.
    A. Abragam, Phys. Rev. 98, 1729 (1955)ADSCrossRefGoogle Scholar
  12. 12.
    K.H. Hausser, D. Stehlik, Adv. Magn. Reson. 3, 79 (1968)Google Scholar
  13. 13.
    M. Reese, D. Lennartz, T. Marquardsen, P. Höfer, A. Tavernier, P. Carl, T. Schippmann, M. Bennati, T. Carlomagno, F. Engelke, C. Griesinger, Appl. Magn. Reson. 34, 301 (2008)CrossRefGoogle Scholar
  14. 14.
    M. Reese, M.T. Türke, I. Tkach, G. Parigi, C. Luchinat, T. Marquardsen, A. Tavernier, P. Höfer, F. Engelke, C. Griesinger, J. Am. Chem. Soc. 131, 15086 (2009)CrossRefGoogle Scholar
  15. 15.
    P. Höfer, P. Carl, G. Guthausen, T. Prisner, M. Reese, T. Carlomagno, C. Griesinger, M. Bennati, Appl. Magn. Reson. 34, 393 (2008)CrossRefGoogle Scholar
  16. 16.
    M.-T. Türke, G. Parigi, C. Luchinat, M. Bennati, Phys. Chem. Chem. Phys. 14, 502 (2012)CrossRefGoogle Scholar
  17. 17.
    R.E. Hoffman, Magn. Reson. Chem. 44, 606 (2006)CrossRefGoogle Scholar
  18. 18.
    M. Liu, X. Mao, C. Ye, H. Huang, J.K. Nicholson, J.C. Lindon, J. Magn. Reson. 132, 125 (1998)ADSCrossRefGoogle Scholar
  19. 19.
    M.-T. Türke, I. Tkach, M. Reese, P. Höfer, M. Bennati, Phys. Chem. Chem. Phys. 12, 5893 (2010)CrossRefGoogle Scholar
  20. 20.
    M. Bennati, C. Luchinat, G. Parigi, M.-T. Türke, Phys. Chem. Chem. Phys. 12, 5902 (2010)CrossRefGoogle Scholar
  21. 21.
    C. Luchinat, G. Parigi, Appl. Magn. Reson. 34, 379 (2008)CrossRefGoogle Scholar
  22. 22.
    D. Sezer, M.J. Prandolini, T.F. Prisner, Phys. Chem. Chem. Phys. 11, 6626 (2009)CrossRefGoogle Scholar
  23. 23.
    M.-T. Türke, M. Bennati, Phys. Chem. Chem. Phys. 13, 3630 (2011)CrossRefGoogle Scholar
  24. 24.
    P. Höfer, G. Parigi, C. Luchinat, P. Carl, G. Guthausen, M. Reese, T. Carlomagno, C. Griesinger, M. Bennati, J. Am. Chem. Soc. 130, 3254 (2008)CrossRefGoogle Scholar
  25. 25.
    L.-P. Hwang, J.H. Freed, J. Chem. Phys. 63, 4017 (1975)MathSciNetADSCrossRefGoogle Scholar
  26. 26.
    H.F. Bennett, R.D. Brown III, S.H. Koenig, H.M. Swartz, Magn. Reson. Med. 4, 93 (1987)CrossRefGoogle Scholar
  27. 27.
    C.F. Polnaszek, R.G. Bryant, J. Chem. Phys. 81, 4038 (1984)ADSCrossRefGoogle Scholar
  28. 28.
    V. Vitzthum, F. Borcard, S. Jannin, M. Morin, P. Mieville, M.A. Caporini, A. Sienkiewicz, S. Gerber-Lemaire, G. Bodenhausen, ChemPhysChem 12, 2929 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Philip Lottmann
    • 1
  • Thorsten Marquardsen
    • 2
  • Alexander Krahn
    • 2
  • Andreas Tavernier
    • 2
  • Peter Höfer
    • 2
  • Marina Bennati
    • 3
  • Frank Engelke
    • 2
    Email author
  • Christian Griesinger
    • 1
    Email author
  1. 1.NMR Based Structural BiologyMax Planck Institute for Biophysical ChemistryGöttingenGermany
  2. 2.Bruker BioSpinRheinstettenGermany
  3. 3.Electron Paramagnetic ResonanceMax Planck Institute for Biophysical ChemistryGöttingenGermany

Personalised recommendations