Advertisement

Applied Magnetic Resonance

, Volume 43, Issue 1–2, pp 91–106 | Cite as

Developing DNP/Solid-State NMR Spectroscopy of Oriented Membranes

  • Evgeniy S. Salnikov
  • Olivier Ouari
  • Eline Koers
  • Hiba Sarrouj
  • Trent Franks
  • Melanie Rosay
  • Shane Pawsey
  • Christian Reiter
  • Priyanga Bandara
  • Hartmut Oschkinat
  • Paul Tordo
  • Frank Engelke
  • Burkhard Bechinger
Article

Abstract

Dynamic nuclear polarization (DNP)/solid-state nuclear magnetic resonance (NMR) spectroscopy bears great potential for the investigation of membrane-associated polypeptides which can often be produced only in small amounts and which need to be ‘diluted’ in lipid bilayer environments to adopt or maintain their functional structure. Here we present investigations using biradicals, such as TOTAPOL and bTbK, for solid-state NMR signal enhancement using DNP in the context of lipid membranes. By transferring polarization from electron to nuclear spins using microwave irradiation signal enhancement factors of up to 13 are obtained with TOTAPOL and up to 17 with bTbK. The possible reasons why these factors are below those obtained in glassy samples of bulk solvents (40–60 under similar conditions) are evaluated and discussed. In order to further ameliorate the enhancement factors the physico-chemical characteristics of TEMPOL, TOTAPOL, bTbK, and bCTbK, such as their partitioning between hydrophilic and hydrophobic solvents or their stability under different environmental conditions are presented. Finally, having provided proof-of-concept that DNP/solid-state NMR measurements can be performed with oriented membrane samples work in progress is presented on the development of a flat-coil probe for DNP/solid-state NMR experiments on oriented membranes.

Keywords

Nuclear Magnetic Resonance Nuclear Magnetic Resonance Spectroscopy Dynamic Nuclear Polarization Magic Angle Spin Nuclear Magnetic Resonance Experiment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We are grateful to Ralph Weber from Bruker BioSpin for acquiring EPR spectra and the EPR service of the University of Strasbourg for access to their spectrometers. The discussions with Fabien Aussenac and Werner Maas have provided valuable insight and helped us to advance with this work. We acknowledge the Bio-NMR European Commission’s Program 7 (FP7), project number 261863, BIO-NMR 00060 for access to DNP/solid-state NMR instrumentation in Berlin. The financial support by the CNRS (grant to support H.S.), the RTRA Foundation International Center for Frontier Research in Chemistry, Strasbourg and the University of Strasbourg (PPF RMN) is gratefully acknowledged. The Bechinger laboratory is grateful to the Institute of Supramolecular Chemistry for hosting the team.

References

  1. 1.
    E. Wallin, G. von Heijne, Protein Sci. 7, 1029–1038 (1998)CrossRefGoogle Scholar
  2. 2.
    D. Boyd, C. Schierle, J. Beckwith, Protein Sci. 7, 201–205 (1998)CrossRefGoogle Scholar
  3. 3.
    B.L. Wu, E.Y.T. Chien, C.D. Mol, G. Fenalti, W. Liu, V. Katritch, R. Abagyan, A. Brooun, P. Wells, F.C. Bi, D.J. Hamel, P. Kuhn, T.M. Handel, V. Cherezov, R.C. Stevens, Science 330, 1066–1071 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    D. Wacker, G. Fenalti, M.A. Brown, V. Katritch, R. Abagyan, V. Cherezov, R.C. Stevens, J. Am. Chem. Soc. 132, 11443–11445 (2010)CrossRefGoogle Scholar
  5. 5.
    A. Bockmann, Angew. Chem. Int. Ed. Engl. 47, 6110–6113 (2008)CrossRefGoogle Scholar
  6. 6.
    M. Renault, M.P. Bos, J. Tommassen, M. Baldus, J. Am. Chem. Soc. 133, 4175–4177 (2011)CrossRefGoogle Scholar
  7. 7.
    T. Jacso, W.T. Franks, H. Rose, U. Fink, J. Broecker, S. Keller, H. Oschkinat, B. Reif, Angew. Chem. Int. Ed. Engl. 51, 432–435 (2011)CrossRefGoogle Scholar
  8. 8.
    D.E. Warschawski, A.A. Arnold, M. Beaugrand, A. Gravel, E. Chartrand, I. Marcotte, Biochim. Biophys. Acta 1808, 1957–1974 (2011)CrossRefGoogle Scholar
  9. 9.
    J.M. Resende, C. Mendonca Moraes, V.H.D.O. Munhoz, C. Aisenbrey, R.M. Verly, P. Bertani, A. Cesar, D. Pilo-Veloso, B. Bechinger, Proc. Natl. Acad. Sci. USA. 106, 16639–16644 (2009)CrossRefGoogle Scholar
  10. 10.
    S.D. Cady, K. Schmidt-Rohr, J. Wang, C.S. Soto, W.F. Degrado, M. Hong, Nature 463, 689–692 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    S. Tapaneeyakorn, A.D. Goddard, J. Oates, C.L. Willis, A. Watts, Biochim. Biophys. Acta 1808, 1462–1475 (2011)CrossRefGoogle Scholar
  12. 12.
    R. Fu, E.D. Gordon, D.J. Hibbard, M. Cotten, J. Am. Chem. Soc. 131, 10830–10831 (2009)CrossRefGoogle Scholar
  13. 13.
    E. Salnikov, B. Bechinger, Biophys. J. 100, 1473–1480 (2011)CrossRefGoogle Scholar
  14. 14.
    M. Sharma, M. Yi, H. Dong, H. Qin, E. Peterson, D.D. Busath, H.X. Zhou, T.A. Cross, Science 330, 509–512 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    R. Verardi, L. Shi, N.J. Traaseth, N. Walsh, G. Veglia, Proc. Natl. Acad. Sci. USA. 108, 9101–9106 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    A. Ramamoorthy, D.K. Lee, T. Narasimhaswamy, R.P.R. Nanga, Biochim. Biophys. Acta 1798, 223–227 (2010)CrossRefGoogle Scholar
  17. 17.
    S.D. Cady, C. Goodman, C.D. Tatko, W.F. DeGrado, M. Hong, J. Am. Chem. Soc. 129, 5719–5729 (2007)CrossRefGoogle Scholar
  18. 18.
    J. Hirschinger, J. Raya, B. Perrone, B. Bechinger, Chem. Phys. Lett. 508, 155–164 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    B. Bechinger, J.M. Resende, C. Aisenbrey, Biophys. Chem. 153, 115–125 (2011)CrossRefGoogle Scholar
  20. 20.
    T.A. Cross, Method Enzymol. 289, 672–696 (1997)CrossRefGoogle Scholar
  21. 21.
    J.H. Prestegard, C.M. Bougault, A.I. Kishore, Chem. Rev. 104, 3519–3540 (2004)CrossRefGoogle Scholar
  22. 22.
    C. Aisenbrey, M. Cusan, S. Lambotte, P. Jasperse, J. Georgescu, U. Harzer, B. Bechinger, Chem. Biol. Chem. 9, 944–951 (2008)Google Scholar
  23. 23.
    T. Prisner, W. Köckenberger, Dynamic Nuclear Polarization: New Experimental and Methodology Approaches and Applications in Physics, Chemistry, Biology and Medicine (Springer, Wien, 2008)Google Scholar
  24. 24.
    A.B. Barnes, B. Corzilius, M.L. Mak-Jurkauskas, L.B. Andreas, V.S. Bajaj, Y. Matsuki, M.L. Belenky, J. Lugtenburg, J.R. Sirigiri, R.J. Temkin, J. Herzfeld, R.G. Griffin, Phys. Chem. Chem. Phys. 12, 5861–5867 (2010)CrossRefGoogle Scholar
  25. 25.
    V.S. Bajaj, M.L. Mak-Jurkauskas, M. Belenky, J. Herzfeld, R.G. Griffin, J. Magn. Reson. 202, 9–13 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    L.R. Becerra, G.J. Gerfen, R.J. Temkin, D.J. Singel, R.G. Griffin, Phys. Rev. Lett. 71, 3561–3564 (1993)ADSCrossRefGoogle Scholar
  27. 27.
    D.A. Hall, D.C. Maus, G.J. Gerfen, S.J. Inati, L.R. Becerra, F.W. Dahlquist, R.G. Griffin, Science 276, 930–932 (1997)CrossRefGoogle Scholar
  28. 28.
    T. Maly, G.T. Debelouchina, V.S. Bajaj, K.N. Hu, C.G. Joo, M.L. Mak-Jurkauskas, J.R. Sirigiri, P.C. Van Der Wel, J. Herzfeld, R.J. Temkin, R.G. Griffin, J. Chem. Phys. 128, 052211 (2008)ADSCrossRefGoogle Scholar
  29. 29.
    U. Akbey, W.T. Franks, A. Linden, S. Lange, R.G. Griffin, B.J. van Rossum, H. Oschkinat, Angew. Chem. Int. Ed. Engl. 49, 7803–7806 (2010)CrossRefGoogle Scholar
  30. 30.
    M.J. Bayro, G.T. Debelouchina, M.T. Eddy, N.R. Birkett, C.E. MacPhee, M. Rosay, W.E. Maas, C.M. Dobson, R.G. Griffin, J. Am. Chem. Soc. 133, 13967–13974 (2011)CrossRefGoogle Scholar
  31. 31.
    L. Reggie, J.J. Lopez, I. Collinson, C. Glaubitz, M. Lorch, J. Am. Chem. Soc. 133, 19084–19086 (2011)CrossRefGoogle Scholar
  32. 32.
    A.H. Linden, S. Lange, W.T. Franks, U. Akbey, E. Specker, B.J. van Rossum, H. Oschkinat, J. Am. Chem. Soc. 133, 19266–19269 (2011)CrossRefGoogle Scholar
  33. 33.
    M. Rosay, A.C. Zeri, N.S. Astrof, S.J. Opella, J. Herzfeld, R.G. Griffin, J. Am. Chem. Soc. 123, 1010–1011 (2001)CrossRefGoogle Scholar
  34. 34.
    E. Salnikov, M. Rosay, S. Pawsey, O. Ouari, P. Tordo, B. Bechinger, J. Am. Chem. Soc. 132, 5940–5941 (2010)CrossRefGoogle Scholar
  35. 35.
    Y. Matsuki, T. Maly, O. Ouari, H. Karoui, M.F. Le, E. Rizzato, S. Lyubenova, J. Herzfeld, T. Prisner, P. Tordo, R.G. Griffin, Angew. Chem. Int. Ed. Engl. 48, 4996–5000 (2009)CrossRefGoogle Scholar
  36. 36.
    D.K. Lee, B.S. Kwon, A. Ramamoorthy, Langmuir 24, 13598–13604 (2008)CrossRefGoogle Scholar
  37. 37.
    E.S. Salnikov, M. De Zotti, F. Formaggio, X. Li, C. Toniolo, J.D. O’Neil, J. Raap, S.A. Dzuba, B. Bechinger, J. Phys. Chem. B 113, 3034–3042 (2009)CrossRefGoogle Scholar
  38. 38.
    M. Rosay, L. Tometich, S. Pawsey, R. Bader, R. Schauwecker, M. Blank, P.M. Borchard, S.R. Cauffman, K.L. Felch, R.T. Weber, R.J. Temkin, R.G. Griffin, W.E. Maas, Phys. Chem. Chem. Phys. 12, 5850–5860 (2010)CrossRefGoogle Scholar
  39. 39.
    K.R. Thurber, R. Tycko, J. Magn. Reson. 195, 179–186 (2008)ADSCrossRefGoogle Scholar
  40. 40.
    C. Ysacco, E. Rizzato, M.A. Virolleaud, H. Karoui, A. Rockenbauer, F. Le Moigne, D. Siri, O. Ouari, R.G. Griffin, P. Tordo, Phys. Chem. Chem. Phys. 12, 5841–5845 (2010)CrossRefGoogle Scholar
  41. 41.
    A. Zagdoun, G. Casano, O. Ouari, G. Lapadula, A.J. Rossini, M. Lelli, M. Baffert, D. Gajan, L. Veyre, W.E. Maas, M.M. Rosay, R.T. Weber, C. Thieuleux, C. Coperet, A. Lesage, P. Tordo, L. Emsley, J. Am. Chem. Soc. 134, 2284–2291 (2012)CrossRefGoogle Scholar
  42. 42.
    C. Sizun, B. Bechinger, J. Am. Chem. Soc. 124, 1146–1147 (2002)CrossRefGoogle Scholar
  43. 43.
    C. Glaubitz, A. Watts, J. Magn. Reson. 130, 305–316 (1998)ADSCrossRefGoogle Scholar
  44. 44.
    C. Aisenbrey, B. Bechinger, J. Am. Chem. Soc. 126, 16676–16683 (2004)CrossRefGoogle Scholar
  45. 45.
    B. Bechinger, C. Sizun, Concepts Magn. Reson. 18A, 130–145 (2003)CrossRefGoogle Scholar
  46. 46.
    P.C. van der Wel, J.R. Lewandowski, R.G. Griffin, Biochemistry-Us 49, 9457–9469 (2010)CrossRefGoogle Scholar
  47. 47.
    K.N. Hu, C. Song, H.H. Yu, T.M. Swager, R.G. Griffin, J. Chem. Phys. 128, 052302 (2008)ADSCrossRefGoogle Scholar
  48. 48.
    K.R. Thurber, W.M. Yau, R. Tycko, J. Magn. Reson. 204, 303–313 (2010)ADSCrossRefGoogle Scholar
  49. 49.
    C. Aisenbrey, P. Bertani, B. Bechinger, Solid-state NMR investigations of membrane-associated antimicrobial peptides, in Antimicrobial Peptides Humana Press, ed. by A. Guiliani, A.C. Rinaldi (Springer, New York, 2010), pp. 209–233Google Scholar
  50. 50.
    M. Rosay, J.C. Lansing, K.C. Haddad, W.W. Bachovchin, J. Herzfeld, R.J. Temkin, R.G. Griffin, J. Am. Chem. Soc. 125, 13626–13627 (2003)CrossRefGoogle Scholar
  51. 51.
    P.C. Van Der Wel, K.N. Hu, J. Lewandowski, R.G. Griffin, J. Am. Chem. Soc. 128, 10840–10846 (2006)CrossRefGoogle Scholar
  52. 52.
    U. Akbey, S. Lange, W. Trent Franks, R. Linser, K. Rehbein, A. Diehl, B.J. van Rossum, B. Reif, H. Oschkinat, J. Biomol. NMR 46, 67–73 (2010)CrossRefGoogle Scholar
  53. 53.
    E.G. Finer, J. Chem. Soc., Faraday Trans. II(69), 1590–1600 (1973)Google Scholar
  54. 54.
    C. Mendonca de Moraes, B. Bechinger, Magn. Reson. Chem. 42, 155–161 (2004)CrossRefGoogle Scholar
  55. 55.
    K.N. Hu, G.T. Debelouchina, A.A. Smith, R.G. Griffin, J. Chem. Phys. 134, 125105 (2011)ADSCrossRefGoogle Scholar
  56. 56.
    K. Yamamoto, J.D. Xu, K.E. Kawulka, J.C. Vederas, A. Ramamoorthy, J. Am. Chem. Soc. 132, 6929 (2010)Google Scholar
  57. 57.
    K. Yamamoto, S. Vivekanandan, A. Ramamoorthy, J. Phys. Chem. B 115, 12448–12455 (2011)CrossRefGoogle Scholar
  58. 58.
    A. Ramamoorthy, Y. Wei, D. Lee, Annu. Rep. NMR Spectrosc. 52, 1–52 (2004)CrossRefGoogle Scholar
  59. 59.
    C.S. Song, K.N. Hu, C.G. Joo, T.M. Swager, R.G. Griffin, J. Am. Chem. Soc. 128, 11385–11390 (2006)CrossRefGoogle Scholar
  60. 60.
    Y. Matsuki, T. Maly, O. Ouari, S. Lyubenova, J. Herzfeld, T. Prisner, P. Tordo, R.G. Griffin, Angewandte Chemie 48, 4996–5000 (2009)Google Scholar
  61. 61.
    M. Bak, J.T. Rasmussen, N.C. Nielsen, J. Magn. Reson. 147, 296–330 (2000)ADSCrossRefGoogle Scholar
  62. 62.
    E.J. Dufourc, C. Mayer, J. Stohrer, G. Althoff, G. Kothe, Biophys. J. 61, 42–57 (1992)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Evgeniy S. Salnikov
    • 1
  • Olivier Ouari
    • 2
  • Eline Koers
    • 3
    • 6
  • Hiba Sarrouj
    • 1
    • 4
  • Trent Franks
    • 5
  • Melanie Rosay
    • 3
  • Shane Pawsey
    • 3
  • Christian Reiter
    • 4
  • Priyanga Bandara
    • 4
  • Hartmut Oschkinat
    • 5
  • Paul Tordo
    • 2
  • Frank Engelke
    • 4
  • Burkhard Bechinger
    • 1
  1. 1.Institut de Chimie, UMR7177, CNRSUniversité de StrasbourgStrasbourgFrance
  2. 2.Faculté des Sciences, Institut de Chimie Radicalaire, UMR 7273Aix-Marseille UniversityMarseille Cedex 20France
  3. 3.Bruker BioSpin CorporationBillericaUSA
  4. 4.Bruker BioSpin, SilberstreifenRheinstettenGermany
  5. 5.Leibniz-Institut für Molekulare PharmakologieBerlinGermany
  6. 6.Bijvoet Center for Biomolecular ResearchUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations