Applied Magnetic Resonance

, Volume 43, Issue 1–2, pp 69–79 | Cite as

Fast Dissolution Dynamic Nuclear Polarization NMR of 13C-Enriched 89Y-DOTA Complex: Experimental and Theoretical Considerations

  • Lloyd Lumata
  • Matthew MerrittEmail author
  • Craig Malloy
  • A. Dean Sherry
  • Zoltan KovacsEmail author


The yttrium complex of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetra(1′-13C-acetic acid) [13C]DOTA was synthesized. Fast dissolution dynamic nuclear polarization (DNP) nuclear magnetic resonance (NMR) studies revealed that the 89Y, 13C, and 15N nuclei present in the complex could be co-polarized at the same optimum microwave irradiation frequency. The liquid-state spin–lattice relaxation time T 1 of these nuclei were found to be reasonably long to preserve some or most of the DNP-enhanced polarization after dissolution. The hyperpolarized 13C and 89Y NMR signals were optimized in different glassing mixtures. The overall results are discussed in light of the thermal mixing model of DNP.


Nuclear Magnetic Resonance Dynamic Nuclear Polarization Nuclear Magnetic Resonance Signal Nuclear Magnetic Resonance Tube Nuclear Larmor Frequency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We acknowledge the National Institutes of Health (grant no. R21EB009147) for the financial support on this work.


  1. 1.
    C.P. Slichter, Principles of magnetic resonance (Springer, New York, 1989)Google Scholar
  2. 2.
    A. Abragam, M. Goldman, Rep. Prog. Phys. 41, 395–467 (1978)ADSCrossRefGoogle Scholar
  3. 3.
    W. de Boer, J. Low Temp. Phys. 22, 185 (1976)ADSCrossRefGoogle Scholar
  4. 4.
    D.G. Crabb, W. Meyer, Annu. Rev. Nucl. Part. Sci. 47, 67 (1997)ADSCrossRefGoogle Scholar
  5. 5.
    J.H. Ardenkjaer-Larsen, B. Fridlund, A. Gram, G. Hansson, L. Hansson, M.H. Lerche, R. Servin, M. Thaning, K. Golman, Proc. Natl. Acad. Sci. USA. 100, 10158–10163 (2003)ADSCrossRefGoogle Scholar
  6. 6.
    L. Lumata, A.K. Jindal, M.E. Merritt, C.R. Malloy, A.D. Sherry, Z. Kovacs, J. Am. Chem. Soc. 133, 8673–8680 (2011)CrossRefGoogle Scholar
  7. 7.
    M. Merritt, C. Harrison, Z. Kovacs, P. Kshirsagar, C.R. Malloy, A.D. Sherry, J. Am. Chem. Soc. 129, 12942–12943 (2007)CrossRefGoogle Scholar
  8. 8.
    A.K. Jindal, M.E. Merritt, E.H. Suh, C.R. Malloy, A.D. Sherry, Z. Kovacs, J. Am. Chem. Soc. 132, 784–1785 (2010)CrossRefGoogle Scholar
  9. 9.
    R.C. Holz, W.D. Horrocks, J. Magn. Reson. 89, 627–631 (1990)Google Scholar
  10. 10.
    J.F. Desreux, Inorg. Chem. 19, 1319–1324 (1980)CrossRefGoogle Scholar
  11. 11.
    B.R. Patyal, J.H. Gao, R.F. Williams, J. Roby, B. Saam, B.A. Rockwell, R.J. Thomas, D.J. Stolarski, P.T. Fox, J. Magn. Reson. 126, 58–65 (1997)ADSCrossRefGoogle Scholar
  12. 12.
    M. Borghini, Phys. Rev. Lett. 20, 419–421 (1968)ADSCrossRefGoogle Scholar
  13. 13.
    J.H. Ardenkjaer-Larsen, S. Macholl, H. Johannesson, Appl. Magn. Reson. 34, 509–522 (2008)CrossRefGoogle Scholar
  14. 14.
    S. Reynolds, H. Patel, Appl. Magn. Reson. 34, 495–508 (2008)CrossRefGoogle Scholar
  15. 15.
    F. Kurdzesau, B. van den Brandt, A. Comment, P. Hautle, S. Jannin, J.J. van der Klink, J.A. Konter, J. Phys. D Appl. Phys. 41, 155506 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    L. Lumata, Z. Kovacs, C. Malloy, A.D. Sherry, M. Merritt, Phys. Med. Biol. 56, N85–N92 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    M. Borghini, K. Scheffer, Phys. Rev. Lett. 26, 1362 (1971)ADSCrossRefGoogle Scholar
  18. 18.
    P. Mieville, S. Jannin, G. Bodenhausen, J. Magn. Reson. 210, 137–140 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    S. Bowen, C. Hilty, Phys. Chem. Chem. Phys. 12, 5766–5770 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Advanced Imaging Research Center, University of Texas Southwestern Medical CenterDallasUSA
  2. 2.Department of ChemistryUniversity of Texas at DallasRichardsonUSA

Personalised recommendations