Advertisement

Applied Magnetic Resonance

, Volume 40, Issue 4, pp 415–425 | Cite as

Design, Implementation, Simulation, and Visualization of a Highly Efficient RIM Microfluidic Mixer for Rapid Freeze-Quench of Biological Samples

  • Bryan Schmidt
  • Goher Mahmud
  • Siowling Soh
  • Sun Hee Kim
  • Taylor Page
  • Thomas V. O’Halloran
  • Bartosz A. Grzybowski
  • Brian M. Hoffman
Article

Abstract

Rapid freeze-quench (RFQ) trapping of short-lived reaction intermediates for spectroscopic study plays an important role in the characterization of biological reactions. Recently, there has been considerable effort to achieve sub-millisecond reaction deadtimes. We present here a new, robust, high-velocity microfluidic mixer that enables such rapid freeze-quenching. It is a based on the mixing method of two impinging jets commonly used in reaction injection molding of plastics. This method achieves efficient mixing by inducing chaotic flow at relatively low Reynolds numbers (Re = 140). We present the first mathematical simulation and microscopic visualization of mixing in such RFQ micromixers, the results of which show that the impinging solutions efficiently mix within the mixing chamber. These tests, along with a practical demonstration in an RFQ setup that involves copper wheels, show that this new mixer can in practice provide reaction deadtimes as low as 100 µs.

Graphical Abstract

Keywords

Reynolds Number Electron Paramagnetic Resonance Outlet Channel Freezing Time Inlet Stream 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by the National Institutes of Health (HL13531, BMH; GM54111, TVO’H), and the Non-Equilibrium Energy Research Center (BG).

References

  1. 1.
    C. Krebs, J.C. Price, J. Baldwin, L. Saleh, M.T. Green, J.M. Bollinger Jr., Inorg. Chem. 44, 742–757 (2005)Google Scholar
  2. 2.
    R.C. Bray, Biochem. J. 81, 189 (1961)Google Scholar
  3. 3.
    G.N. George, R.C. Bray, S.P. Cramer, Biochem. Soc. Trans. 14, 651 (1986)Google Scholar
  4. 4.
    D. Qiu, M. Kumar, S.W. Ragsdale, T.G. Spiro, J. Am. Chem. Soc. 117, 2653 (1995)CrossRefGoogle Scholar
  5. 5.
    N. Mitic, L. Saleh, G. Schenk, J.M. Bollinger Jr., E.I. Solomon, J. Am. Chem. Soc. 125, 11200 (2003)CrossRefGoogle Scholar
  6. 6.
    D.P. Ballou, G. Palmer, Anal. Chem. 46, 1248 (1974)CrossRefGoogle Scholar
  7. 7.
    B. Schmidt, J. Mccracken, S. Ferguson-Miller, Proc. Natl. Acad. Sci. USA 100, 15539 (2003)ADSCrossRefGoogle Scholar
  8. 8.
    S.H. Kim, R. Perera, L.P. Hager, J.H. Dawson, B.M. Hoffman, J. Am. Chem. Soc. 128, 5598 (2006)CrossRefGoogle Scholar
  9. 9.
    Y. Lin, G.J. Gerfen, D.L. Rousseau, S.R. Yeh, Anal. Chem. 75, 5381 (2003)CrossRefGoogle Scholar
  10. 10.
    A.V. Cherepanov, S. De Vries, Biochim. Biophys. Acta Bioenerg. 1656, 1 (2004)CrossRefGoogle Scholar
  11. 11.
    C.L. Tucker III, N.P. Suh, Polym. Eng. Sci. 20, 875 (1980)CrossRefGoogle Scholar
  12. 12.
    L.J. Lee, J.M. Ottino, W.E. Ranz, C.W. Macosko, Polym. Eng. Sci. 20, 868 (1980)CrossRefGoogle Scholar
  13. 13.
    A.J. Mahajan, D.J. Kirwan, AIChE J. 42, 1801 (1996)CrossRefGoogle Scholar
  14. 14.
    A.M. Teixeira, R.J. Santos, M.R.P.F.N. Costa, J.C.B. Lopes, AIChE J. 51, 1608 (2005)CrossRefGoogle Scholar
  15. 15.
    M. Tanaka, K. Matsuura, S. Yoshioka, S. Takahashi, K. Ishimori, H. Hori, I. Morishima, Biophys. J. 84, 1998 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    W.K. Soh, B.C. Khoo, W.Y.D. Yuen, Exp. Fluids 39, 496 (2005)CrossRefGoogle Scholar
  17. 17.
    W.B. Bald, J. Microsc. 140, 17 (1985)CrossRefGoogle Scholar
  18. 18.
    A.A.S. Bhagat, E.T.K. Peterson, I. Papautsky, J. Micromech. Microeng. 17, 1017 (2007)ADSCrossRefGoogle Scholar
  19. 19.
    F. Schoenfeld, V. Hessel, C. Hofmann, Lab. Chip. 4, 65 (2004)CrossRefGoogle Scholar
  20. 20.
    W.M. Deen, Analysis of Transport Phenomena (Oxford University Press, New York, 1998), pp. 191Google Scholar
  21. 21.
    J.W. Shan, P.E. Dimotakis, J. Fluid. Mech. 566, 47 (2006)ADSzbMATHCrossRefGoogle Scholar
  22. 22.
    J. Yao, Y.F. Yao, M.K. Patel, P.J. Mason, Eur. Phys. J. Appl. Phys. 37, 229 (2007)ADSCrossRefGoogle Scholar
  23. 23.
    H. Song, D.L. Chen, R.F. Ismagilov, Angew. Chem. Int. Ed. 45, 7336 (2006)CrossRefGoogle Scholar
  24. 24.
    C.J. Campbell, B.A. Grzybowski, Philos. Trans. Ser. A Math. Phys. Eng. Sci. 362, 1069 (2004)ADSCrossRefGoogle Scholar
  25. 25.
    T. Egawa, J.L. Durand, E.Y. Hayden, D.L. Rousseau, S.-R. Yeh, Anal. Chem. 81, 1622 (2009)CrossRefGoogle Scholar
  26. 26.
    P. Kolodziej, C.W. Macosko, W.E. Ranz, Polym. Eng. Sci. 22, 388 (1982)CrossRefGoogle Scholar
  27. 27.
    B.K. Johnson, R.K. Prud’homme, AIChE J. 49, 2264 (2003)CrossRefGoogle Scholar
  28. 28.
    A.-L. Tsai, V. Berka, R.J. Kulmacz, G. Wu, G. Palmer, Anal. Biochem. 264, 165 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Bryan Schmidt
    • 1
    • 3
  • Goher Mahmud
    • 2
  • Siowling Soh
    • 2
  • Sun Hee Kim
    • 1
    • 4
  • Taylor Page
    • 1
  • Thomas V. O’Halloran
    • 1
  • Bartosz A. Grzybowski
    • 1
    • 2
  • Brian M. Hoffman
    • 1
  1. 1.Department of ChemistryNorthwestern UniversityEvanstonUSA
  2. 2.Department of Chemical and Biological EngineeringNorthwestern UniversityEvanstonUSA
  3. 3.Division of ScienceMinot State UniversityMinotUSA
  4. 4.Department of Bioinspired Science, Department of Chemistry and Nano ScienceEwha Womans UniversitySeoulKorea

Personalised recommendations