Advertisement

Applied Magnetic Resonance

, Volume 39, Issue 1–2, pp 185–204 | Cite as

Dynamic Nuclear Polarization in III–V Semiconductors

  • Gurneet Kaur
  • G. Denninger
Article

Abstract

We report on electron spin resonance, nuclear magnetic resonance and Overhauser shift experiments on two of the most commonly used III–V semiconductors, GaAs and InP. Localized electron centers in these semiconductors have extended wavefunctions and exhibit strong electron–nuclear hyperfine coupling with the nuclei in their vicinity. These interactions not only play a critical role in electron and nuclear spin relaxation mechanisms, but also result in transfer of spin polarization from the electron spin system to the nuclear spin system. This transfer of polarization, known as dynamic nuclear polarization (DNP), may result in an enhancement of the nuclear spin polarization by several orders of magnitude under suitable conditions. We determine the critical range of doping concentration and temperature conducive to DNP effects by studying these semiconductors with varying doping concentration in a wide temperature range. We show that the electron spin system in undoped InP exhibits electric current-induced spin polarization. This is consistent with model predictions in zinc-blende semiconductors with strong spin–orbit effects.

Keywords

GaAs Electron Spin Resonance Dynamic Nuclear Polarization Electron Spin Resonance Line Dynamic Nuclear Polarization Enhancement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We gratefully acknowledge Prof. M. Dressel and Dr. C. Schlegel for useful discussions and for providing experimental assistance in ESR measurements on GaAs. We thank Mrs. G. Untereiner, Mrs. Eva Rose and the group of Dr. M. Jetter (Institut für Halbleiteroptik und Funktionelle Grenzflächen) for help in making electrical contacts on our samples. The financial support for this work was provided by Graduate College ‘Modern Methods of Magnetic Resonance’ at the University Stuttgart and by Deutsche Forschungsgemeinschaft (DFG-Schwerpunktprogramm SPP 1051).

References

  1. 1.
    P.F. Braun, X. Marie, L. Lombez, B. Urbaszek, T. Amand, P. Renucci, V.K. Kalevich, K.V. Kavokin, O. Krebs, P. Voisin, Y. Masumoto, Phys. Rev. Lett. 94, 116601 (2005)CrossRefADSGoogle Scholar
  2. 2.
    D. Paget, G. Lampel, B. Sapoval, V.I. Safarov, Phys. Rev. B 15, 5780 (1977)CrossRefADSGoogle Scholar
  3. 3.
    J.J.L. Morton, A.M. Tyryshkin, R.M. Brown, S. Shankar, B.W. Lovett, A. Ardavan, T. Schenkel, E.E. Haller, J.W. Ager, S.A. Lyon, Nature 455, 1085 (2008)CrossRefADSGoogle Scholar
  4. 4.
    J.M. Taylor, C.M. Marcus, M.D. Lukin, Phys. Rev. Lett. 90, 206803 (2003)CrossRefADSGoogle Scholar
  5. 5.
    G. Salis, Y. Kato, K. Ensslin, D.C. Driscoll, A.C. Gossard, D.D. Awschalom, Nature 414, 619 (2001)CrossRefADSGoogle Scholar
  6. 6.
    Y. Kato, R.C. Myers, D.C. Driscoll, A.C. Gossard, J. Levy, D.D. Awschalom, Science 299, 1201 (2003)CrossRefADSGoogle Scholar
  7. 7.
    Y.K. Kato, R.C. Myers, A.C. Gossard, D.D. Awschalom, Phys. Rev. Lett. 93, 176601 (2004)CrossRefADSGoogle Scholar
  8. 8.
    C.L. Yang, H.T. He, L. Ding, L.J. Cui, Y.P. Zeng, J.N. Wang, W.K. Ge, Phys. Rev. Lett. 96, 186605 (2006)CrossRefADSGoogle Scholar
  9. 9.
    Y. Kato, R.C. Myers, A.C. Gossard, D.D. Awschalom, Nature (London) 427, 50 (2004)CrossRefADSGoogle Scholar
  10. 10.
    M.J.R. Hoch, J. Lu, P.L. Kuhns, W.G. Moulton, A.P. Reyes, Phys. Rev. B 72, 233204 (2005)CrossRefADSGoogle Scholar
  11. 11.
    J.A. McNeil, W.G. Clark, Phys. Rev. B 13, 4705 (1976)CrossRefADSGoogle Scholar
  12. 12.
    A. Abragam, Principles of Nuclear Magnetism (Clarendon Press, Oxford, 1987), p. 358Google Scholar
  13. 13.
    M. Seck, M. Potemski, P. Wyder, Phys. Rev. B 56, 7422 (1997)CrossRefADSGoogle Scholar
  14. 14.
    J.S. Colton, T.A. Kenneday, A.S. Bracker, D. Gammon, J.B. Miller, Phys. Rev. B 67, 165315 (2003)CrossRefADSGoogle Scholar
  15. 15.
    S.H. Koenig, J. Phys. Chem. Solids 8, 227 (1959)CrossRefADSGoogle Scholar
  16. 16.
    R.S. Crandall, Phys. Rev. B 1, 730 (1970)CrossRefADSGoogle Scholar
  17. 17.
    V.C. Kieu, Phys. Status Solidi A 45, 571 (1978)CrossRefADSGoogle Scholar
  18. 18.
    J.C. Vaissiere, J.P. Nougier, M. Fadel, L. Hlou, P. Kocevar, Phys. Rev. B 46, 13082 (1992)CrossRefGoogle Scholar
  19. 19.
    P.H. Song, K.W. Kim, Phys. Rev. B 66, 035207 (2002)CrossRefADSGoogle Scholar
  20. 20.
    J.M. Kikkawa, D.D. Awschalom, Phys. Rev. Lett. 80, 4313 (1998)CrossRefADSGoogle Scholar
  21. 21.
    D. Paget, Phys. Rev. B 25, 4444 (1982)CrossRefADSGoogle Scholar
  22. 22.
    J. Kainz, U. Rssler, R. Winkler, Phys. Rev. B 70, 195322 (2004)CrossRefADSGoogle Scholar
  23. 23.
    Y. Yafet, Solid State Physics, vol. 14 (Academic, New York, 1963)Google Scholar
  24. 24.
    R.I. Dzhioev, K.V. Kavokin, V.L. Korenev, M.V. Lazarev, B.Ya. Meltser, M.N. Stepanova, B.P. Zakharchenya, D. Gammon, D.S. Katzer, Phys. Rev. B 66, 245204 (2002)CrossRefADSGoogle Scholar
  25. 25.
    J.S. Colton, T.A. Kennedy, A.S. Bracker, J.B. Miller, D. Gammon, Solid State Commun. 132, 613 (2004)CrossRefADSGoogle Scholar
  26. 26.
    K. Murakami, T. Ohyanagi, K. Masuda, Jpn. J. Appl. Phys. 33, 4513 (1993)CrossRefADSGoogle Scholar
  27. 27.
    A. Abragam, Principles of Nuclear Magnetism (Clarendon Press, Oxford, 1987), p. 308Google Scholar
  28. 28.
    A. Haase, MAGMA 2, 157 (1994)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer 2010

Authors and Affiliations

  1. 1.2nd Physics InstituteUniversity of StuttgartStuttgartGermany

Personalised recommendations