Advertisement

Applied Magnetic Resonance

, Volume 39, Issue 1–2, pp 103–111 | Cite as

Magnetic Resonance Studies of Intrinsic Defects in ZnO: Oxygen Vacancy

  • L. S. VlasenkoEmail author
Article

Abstract

Electron paramagnetic resonance (EPR), photo-EPR, and optical detection of magnetic resonance (ODMR) investigations of paramagnetic centers related to the oxygen vacancy in ZnO are reviewed. Main attention is paid to problems of identification of different EPR spectra related to the oxygen vacancy. The experimental photo-EPR and ODMR results, concerning the energy levels formed by the oxygen vacancy in the ZnO gap, are summarized and analyzed.

Keywords

Electron Paramagnetic Resonance Oxygen Vacancy Electron Paramagnetic Resonance Spectrum Deep Level Transient Spectroscopy Electron Paramagnetic Resonance Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    D.C. Look, Mater. Sci. Eng. B 80, 383 (2001)CrossRefGoogle Scholar
  2. 2.
    Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshnicov, S. Dorğan, V. Avrutin, S.-J. Cho, H. Morkoç, J. Appl. Phys. 98, 041301 (2005)CrossRefADSGoogle Scholar
  3. 3.
    C. Liu, F. Yun, H. Morkoç, J. Mater. Sci.: Mater. Electron. 16, 555 (2005)CrossRefGoogle Scholar
  4. 4.
    Y. Jiang, N.C. Giles, L.E. Halliburton, J. Appl. Phys. 101, 93706 (2007)CrossRefGoogle Scholar
  5. 5.
    V.A. Nikitenko, J. Appl. Spectrosc. 56, 783 (1994)Google Scholar
  6. 6.
    J.M. Smith, W.E. Vehse, Phys. Lett. A 31, 147 (1970)CrossRefADSGoogle Scholar
  7. 7.
    D.R. Locker, J.M. Meese, IEEE Trans. Nucl. Sci. 19, 237 (1972)CrossRefADSGoogle Scholar
  8. 8.
    J.M. Meese, D.R. Locker, Solid State Commun. 11, 1547 (1972)CrossRefADSGoogle Scholar
  9. 9.
    C. Gonzalez, D. Galland, A. Herve, Phys. Status Solidi B 72, 309 (1975)CrossRefADSGoogle Scholar
  10. 10.
    V. Soriano, D. Galland, Phys. Status Solidi B 77, 739 (1976)CrossRefADSGoogle Scholar
  11. 11.
    A. Hausmann, B. Schallenberger, Z. Phys. B 31, 269 (1978)CrossRefADSGoogle Scholar
  12. 12.
    C.G. Van de Walle, Physica B 308–310, 899 (2001)CrossRefGoogle Scholar
  13. 13.
    A. Janotti, C.G. Van de Walle, Appl. Phys. Lett. 87, 122102 (2005)CrossRefADSGoogle Scholar
  14. 14.
    A. Janotti, C.G. Van de Walle, J. Cryst. Growth 287, 58 (2006)CrossRefADSGoogle Scholar
  15. 15.
    A. Janotti, C.G. Van de Walle, Phys. Rev. B 76, 165202 (2007)CrossRefADSGoogle Scholar
  16. 16.
    S. Lany, A. Zunger, Phys. Rev. B 72, 035215 (2005)CrossRefADSGoogle Scholar
  17. 17.
    S. Lany, A. Zunger, Phys. Rev. Lett. 98, 045501 (2007)CrossRefADSGoogle Scholar
  18. 18.
    X.J. Wang, L.S. Vlasenko, S.J. Pearton, W.M. Chen, I.A. Buyanova, J. Phys. D: Appl. Phys. 42, 175411 (2009)CrossRefADSGoogle Scholar
  19. 19.
    N.T. Son, I.G. Ivanov, A. Kuznetsov, B.G. Svensson, Q.X. Zhao, M. Willander, N. Morishita, T. Ohshima, H. Itoh, J. Isoya, E. Jansén, R. Yakimova, J. Appl. Phys. 102, 093504 (2007)CrossRefADSGoogle Scholar
  20. 20.
    N.T. Son, I.G. Ivanov, A. Kuznetsov, B.G. Svensson, Q.X. Zhao, M. Willander, M.N. Morishita, T. Ohshima, H. Itoh, J. Isoya, E. Janzén, R. Yakimova, J. Cryst. Growth 31, 1006 (2008)CrossRefADSGoogle Scholar
  21. 21.
    A. Pöppl, G. Völkel, Phys. Status Solidi A 125, 571 (1991)CrossRefADSGoogle Scholar
  22. 22.
    N.G. Kakazey, T.V. Srećković, M.M. Ristić, J. Mater. Sci. 32, 4619 (1997)CrossRefGoogle Scholar
  23. 23.
    M.G. Kakazey, G.N. Kakazei, J.G. Gonzalez-Rodrigez, Cryst. Res. Technol. 36, 429 (2001)CrossRefGoogle Scholar
  24. 24.
    F. Tuomisto, V. Ranki, K. Saarinen, D.C. Look, Phys. Rev. Lett. 91, 205502 (2003)CrossRefADSGoogle Scholar
  25. 25.
    F. Tuomisto, K. Saarinen, D.C. Look, G.C. Farlow, Phys. Rev. B 72, 085206 (2005)CrossRefADSGoogle Scholar
  26. 26.
    F.A. Selim, M.H. Weber, D. Solodovnikov, K.G. Lynn, Phys. Rev. Lett. 99, 085502 (2007)CrossRefADSGoogle Scholar
  27. 27.
    K.M. Sancier, Surf. Sci. 21, 1 (1970)CrossRefADSGoogle Scholar
  28. 28.
    W.E. Carlos, E.R. Glaser, D.C. Look, Physica B 308–310, 976 (2001)CrossRefGoogle Scholar
  29. 29.
    J. Schneider, A. Raüber, Z. Naturforsch 16a, 712 (1961)ADSGoogle Scholar
  30. 30.
    P.H. Kasai, Phys. Rev. 130, 989 (1963)CrossRefADSGoogle Scholar
  31. 31.
    A. Hausmann, Z. Phys. 237, 86 (1970)CrossRefADSGoogle Scholar
  32. 32.
    V.A. Nikitenko, K.E. Tarkpea, I.V. Pykanov, S.G. Stoyukin, J. Appl. Spectrosc. 68, 502 (2001)CrossRefGoogle Scholar
  33. 33.
    F.H. Leiter, H.R. Alves, A. Hofstaetter, D.M. Hofmann, B.K. Meyer, Phys. Status Solidi B 226, R4 (2001)CrossRefADSGoogle Scholar
  34. 34.
    F. Leiter, H. Zhou, F. Heneker, A. Hofstaetter, D.M. Hofmann, B.K. Meyer, Physica B 308–310, 908 (2001)CrossRefGoogle Scholar
  35. 35.
    K. Tarkpea, A. Ots, V.A. Nikitenko, J. Phys. Chem. Solids 55, 1353 (1994)CrossRefADSGoogle Scholar
  36. 36.
    L.S. Vlasenko, Phys. B: Condens. Matter 404, 4774 (2009)CrossRefADSGoogle Scholar
  37. 37.
    Y.V. Gorelkinskii, G.D. Watkins, Phys. Rev. B 69, 115212 (2004)CrossRefADSGoogle Scholar
  38. 38.
    L.S. Vlasenko, G.D. Watkins, Phys. Rev. B 72, 035203 (2005)CrossRefADSGoogle Scholar
  39. 39.
    L.S. Vlasenko, G.D. Watkins, Physica B 376–377, 677 (2006)CrossRefGoogle Scholar
  40. 40.
    L.S. Vlasenko, G.D. Watkins, Phys. Rev. B 71, 125210 (2005)CrossRefADSGoogle Scholar
  41. 41.
    D.M. Hofmann, A. Hofstaetter, F. Leiter, H. Zhou, F. Henecker, B.K. Meyer, S.B. Orlinskii, J. Schmidt, P.G. Baranov, Phys. Rev. Lett. 88, 045504 (2002)CrossRefADSGoogle Scholar
  42. 42.
    S.B. Orlinskii, J. Schmidt, P.G. Baranov, D.M. Hofmann, C.M. Donegá, A. Meijerink, Phys. Rev. Lett. 92, 047603 (2004)CrossRefADSGoogle Scholar
  43. 43.
    S.B. Orlinskii, J. Schmidt, E.J.J. Groenen, P.G. Baranov, C.M. Donegá, A. Meijerink, Phys. Rev. Lett. 94, 097602 (2005)CrossRefADSGoogle Scholar
  44. 44.
    S.B. Orlinskii, H. Blok, J. Schmidt, P.G. Baranov, C.M. Donegá, A. Meijerink, Phys. Rev. B 74, 045204 (2006)CrossRefADSGoogle Scholar
  45. 45.
    C. Gonsalez, D. Block, R.T. Cox, A. Hervé, J. Cryst. Growth 59, 357 (1982)CrossRefADSGoogle Scholar
  46. 46.
    H. Zhou, A. Hofstaetter, D.M. Hofmann, B.K. Meyer, Microelectron. Eng. 66, 59 (2003)CrossRefGoogle Scholar
  47. 47.
    T.R. Paudel, W.R.L. Lambrecht, Phys. Rev. B 77, 205202 (2008)CrossRefADSGoogle Scholar
  48. 48.
    D. Pfisterer, J. Sann, D.M. Hofmann, B. Meyer, T. Frank, G. Pensl, R. Tena-Zaera, J. Zúñiga-Pérez, C. Martines-Tomas, V. Muñoz-Sanjosé, Phys. Status Solidi C 3, 997 (2006)CrossRefADSGoogle Scholar
  49. 49.
    D.M. Hofmann, D. Pfisterer, J. Sann, B.K. Meyer, R. Tena-Zaera, V. Munoz-Sanjoze, T. Frank, G. Pensl, Appl. Phys. A 88, 147 (2007)CrossRefADSGoogle Scholar
  50. 50.
    R. Laiho, M.P. Vlasenko, L.S. Vlasenko, J. Appl. Phys. 103, 123709 (2008)CrossRefADSGoogle Scholar
  51. 51.
    S.M. Evans, N.C. Giles, L.E. Halliburton, L.A. Kappers, J. Appl. Phys. 103, 043710 (2008)CrossRefADSGoogle Scholar

Copyright information

© Springer 2010

Authors and Affiliations

  1. 1.Solid State Physics DepartmentA. F. Ioffe Physico-Technical InstituteSaint PetersburgRussia

Personalised recommendations