Applied Magnetic Resonance

, Volume 37, Issue 1–4, pp 629–648 | Cite as

Towards the Efficiency of Pharmacologically Active Quinoid Compounds: Electron Transfer and Formation of Reactive Oxygen Species



In this review article, the structure, properties, stability and biological application of redox-active quinones are presented. A series of quinoid molecules is evaluated in terms of their ability to act as electron-transfer active compounds using cyclovoltammetric, electron paramagnetic resonance (EPR) and spin-trapping techniques. Redox potentials and electron distribution of the intermediate radical anions are shown to be decisive factors for the generation of reactive oxygen species (ROS). Mechanisms of ROS generation in dark by biological electron-transfer reaction or under photoexcitation have been proposed and experimentally verified. For site-specific damage of tumors, some quinone derivatives were covalently bound with the luteinizing hormone-releasing hormone (LH–RH or GnRH) that produces specific complexes with receptors on the surface of cancer cells. The properties of obtained conjugates to be bound with the different lines of cancer cells (αT3-1, M2R, LNCaP) were tested. EPR was used for the estimation of efficacy of ROS production by the conjugates in solution and in the complex with cancer cells. The toxicity of these conjugates as well as their stability in the stimulated oxidative stress were tested. The proposed approach could be useful in creating a new family of addressed anticancer drugs, including compounds for the treatment of tumors by photodynamic therapy.


Reactive Oxygen Species Electron Paramagnetic Resonance Quinone Electron Paramagnetic Resonance Spectrum Emodin 



The studies on the synthesis, mechanism of action and biological applications of redox-active compounds were stimulated by a distinguished scientist, our colleague and friend (G.G., M.F., I.B., L.W.) and teacher (S.R.), Professor Yehuda Mazur (late).


  1. 1.
    P.R. Rich, Faraday Discuss. Chem. Soc. 74, 349–364 (1982)CrossRefGoogle Scholar
  2. 2.
    R.E. Pacifici, K.J.A. Davies, Methods Enzymol. 186, 485–502 (1990)CrossRefGoogle Scholar
  3. 3.
    E.R. Stadtman, Annu. Rev. Biochem. 62, 797–821 (1993)CrossRefGoogle Scholar
  4. 4.
    M.J. Burkitt, M. Fitchett, B.C. Gilbert, in Free-Radical Damage to Nucleic Acid Components Initiated by the Fenton Reaction: An ESR Study (Elsevier Science Publishers, Amsterdam, 1989), p. 63Google Scholar
  5. 5.
    S.T. Crooke, V.H. Duvernay, S. Mong, in Molecular Actions and Targeted for Cancer Chemotherapeutic Agents (Academic Press, New York, 1981), p. 137Google Scholar
  6. 6.
    E. Feinstein, E. Canaani, L.M. Weiner, Biochemistry 32, 13156–13161 (1993)CrossRefGoogle Scholar
  7. 7.
    R. Pinkus, L.M. Weiner, V. Daniel, J. Biol. Chem. 271, 13422–13429 (1996)CrossRefGoogle Scholar
  8. 8.
    A.A. Bothner-By, J. Am. Chem. Soc. 75, 728–730 (1953)CrossRefGoogle Scholar
  9. 9.
    L.M. Weiner, Methods Enzymol. 233, 92–105 (1994)CrossRefGoogle Scholar
  10. 10.
    S.I. Dikalov, G.V. Rumyantseva, A.V. Piskunov, L.M. Weiner, Biochemistry 31, 8947–8953 (1992)CrossRefGoogle Scholar
  11. 11.
    D.G. Sushkov, N.P. Gritsan, L.M. Weiner, FEBS Lett. 225, 139–144 (1987)CrossRefGoogle Scholar
  12. 12.
    B. Kalyanaraman, K.M. Morehouse, R.P. Mason, Arch. Biochem. Biophys. 286, 164–170 (1991)CrossRefGoogle Scholar
  13. 13.
    B.Z. Zhu, H.T. Zhao, B. Kalyanaraman, B. Frei, Free Radic. Biol. Med. 32, 465–473 (2002)CrossRefGoogle Scholar
  14. 14.
    B.Z. Zhu, B. Kalyanaraman, G.B. Jiang, Proc. Natl. Acad. Sci. USA 104, 17575–17578 (2007)CrossRefADSGoogle Scholar
  15. 15.
    C. Hadjur, G. Wagnieres, F. Ihringer, P. Monnier, H. van den Bergh, J. Photochem. Photobiol. B 38, 196–202 (1997)CrossRefGoogle Scholar
  16. 16.
    K.R. Weishaupt, C.J. Gomer, T.J. Dougherty, Cancer Res. 36, 2326–2329 (1976)Google Scholar
  17. 17.
    L. Eberson, Adv. Phys. Org. Chem. 31, 91–141 (1998)CrossRefGoogle Scholar
  18. 18.
    L. Eberson, Acta Chem. Scand. 53, 584–593 (1999)CrossRefGoogle Scholar
  19. 19.
    Michel Pagé (ed.), Tumor Targeting in Cancer Therapy (Humana Press, Totowa, NJ, 2002)Google Scholar
  20. 20.
    D. Fitzgerald, I. Pastan, J. Natl. Cancer Inst. 81, 1455–1463 (1989)CrossRefGoogle Scholar
  21. 21.
    J.M. Varga, Methods Enzymol. 112, 259–269 (1985)CrossRefGoogle Scholar
  22. 22.
    T.Y. Lee, C.T. Lin, S.Y. Kuo, D.K. Chang, H.C. Wu, Cancer Res. 67, 10958–10965 (2007)CrossRefGoogle Scholar
  23. 23.
    G. Emons, C. Grundker, A.R. Gunthert, S. Westphalen, J. Kavanagh, C. Verschraegen, Endocr. Relat. Cancer 10, 291–299 (2003)CrossRefGoogle Scholar
  24. 24.
    K.A. Eidne, C.A. Flanagan, R.P. Millar, Science 229, 989–991 (1985)CrossRefADSGoogle Scholar
  25. 25.
    A. Qayum, W. Gullick, R.C. Clayton, K. Sikora, J. Waxman, Br. J. Cancer 62, 96–99 (1990)Google Scholar
  26. 26.
    G. Emons, G.S. Pahwa, O. Ortmann, R. Knuppen, F. Oberheuser, K.D. Schulz, J. Steroid. Biochem. Mol. Biol. 37, 1003–1006 (1990)CrossRefGoogle Scholar
  27. 27.
    P. Volker, C. Grundker, O. Schmidt, K.D. Schulz, G. Emons, Am. J. Obstet. Gynecol. 186, 171–179 (2002)CrossRefGoogle Scholar
  28. 28.
    T. Janaky, A. Juhasz, S. Bajusz, V. Csernus, G. Srkalovic, L. Bokser, S. Milovanovic, T.W. Redding, Z. Rekasi, A. Nagy, A.V. Schally, Proc. Natl. Acad. Sci. USA 89, 972–976 (1992)CrossRefADSGoogle Scholar
  29. 29.
    A. Nagy, A.V. Schally, P. Armatis, K. Szepeshazi, G. Halmos, M. Kovacs, M. Zarandi, K. Groot, M. Miyazaki, A. Jungwirth, J. Horvath, Proc. Natl. Acad. Sci. USA 93, 7269–7273 (1996)Google Scholar
  30. 30.
    K. Moebius, M. Plato, W. Lubitz, F. Lendzian, Israel J. Chem. 28, 239–248 (1988)Google Scholar
  31. 31.
    H. Kurreck, B. Kirste, W. Lubitz, in Electron Nuclear Double Resonance Spectroscopy of Radicals in Solution (VCH, Weinheim, 1988)Google Scholar
  32. 32.
    K. Moebius, W. Lubitz, in Biological Magnetic Resonance, vol. 7, ed. by L.J. Berliner, J. Reuben (Plenum Press, New York, 1987), pp. 129–247 Google Scholar
  33. 33.
    H. Kurreck, B. Kirste, W. Lubitz, Angew. Chem. 96, 171–193 (1984)CrossRefGoogle Scholar
  34. 34.
    G. Feher, in Foundation of Modern EPR, ed. by G.R. Eaton, S.S. Eaton, K.M. Salikhov (World Scientific, River Edge, NJ, 1997)Google Scholar
  35. 35.
    G. Feher, Phys. Rev. 103, 834–851 (1956)CrossRefADSGoogle Scholar
  36. 36.
    R. Biehl, M. Plato, K. Möbius, J. Chem. Phys. 63, 3515–3522 (1975)CrossRefADSGoogle Scholar
  37. 37.
    F. Neese, M.L. Munzarova, in Calculation of NMR and EPR Parameters. Theory and Applications, ed. by M. Kaupp, M. Bühl, V. Malkin (Wiley-VCH, New York, 2004) pp. 21–32Google Scholar
  38. 38.
    M. Kaupp, in EPR of Free Radicals in Solids. Trends in Methods and Applications (Progress in Theoretical Chemistry and Physics vol. 10), ed. by A. Lund, M. Shiotani (Kluwer, Dordrecht, 2003), p. 267Google Scholar
  39. 39.
    M. Munzarova, M. Kaupp, J. Phys. Chem. A 103, 9966–9983 (1999)CrossRefGoogle Scholar
  40. 40.
    R. Batra, B. Giese, M. Spichty, G. Gescheidt, K.N. Houk, J. Phys. Chem. 100, 18371–18379 (1996)CrossRefGoogle Scholar
  41. 41.
    G. Lavie, Y. Mazur, D. Lavie, D. Meruelo, Med. Res. Rev. 15, 111–119 (1995)CrossRefGoogle Scholar
  42. 42.
    P. Agostinis, A. Vantieghem, W. Merlevede, P.A.M. de Witte, Int. J. Biochem. Cell Biol. 34, 221–241 (2002)CrossRefGoogle Scholar
  43. 43.
    S. Rahimipour, N. Litichever-Coslovsky, M. Alaluf, D. Freeman, B. Ehrenberg, L. Weiner, Y. Mazur, M. Fridkin, Y. Koch, Photochem. Photobiol. 81, 250–258 (2005)CrossRefGoogle Scholar
  44. 44.
    S. Rahimipour, C. Palivan, F. Barbosa, I. Bilkis, Y. Koch, L. Weiner, M. Fridkin, Y. Mazur, G. Gescheidt, J. Am. Chem. Soc. 125, 1376–1384 (2003)CrossRefGoogle Scholar
  45. 45.
    S. Rahimipour, I. Bilkis, V. Peron, G. Gescheidt, F. Barbosa, Y. Mazur, Y. Koch, L. Weiner, M. Fridkin, Photochem. Photobiol. 74, 226–236 (2001)CrossRefGoogle Scholar
  46. 46.
    V. Lev-Goldman, B. Mester, N. Ben-Aroya, I. Koch, L. Weiner, M. Fridkin, Bioconjugate Chem. 17, 1008–1016 (2006)CrossRefGoogle Scholar
  47. 47.
    V. Lev-Goldman, B. Mester, N. Ben-Aroya, T. Hanoch, B. Rupp, T. Stanoeva, G. Gescheidt, R. Seger, I. Koch, L. Weiner, M. Fridkin, Bioorg. Med. Chem. 16, 6789–6798 (2008)CrossRefGoogle Scholar
  48. 48.
    S.I. Dikalov, G.V. Rumyantseva, L.M. Weiner, D.S. Sergejev, E.I. Frolova, T.S. Godovikova, V.F. Zarytova, Chem. Biol. Interact. 77, 325–339 (1991)CrossRefGoogle Scholar
  49. 49.
    S. Rahimipour, L. Weiner, P.B. Shrestha-Dawadi, S. Bittner, Y. Koch, M. Fridkin, Lett. Pept. Sci. 5, 421–427 (1998)Google Scholar
  50. 50.
    S. Rahimipour, L. Weiner, M. Fridkin, P.B. ShresthaDawadi, S. Bittner, Lett. Pept. Sci. 3, 263–274 (1996)CrossRefGoogle Scholar
  51. 51.
    J.G. Leonhartsberger, H. Falk, Monatschefte fur Chemie 133, 167–172 (2002)Google Scholar
  52. 52.
    D. Freeman, F. Frolov, E. Kapinus, D. Lavie, G. La Vie, D. Meruelo Y. Mazur, J. Chem. Soc. Chem. Commun., 891–892 (1994)CrossRefGoogle Scholar
  53. 53.
    F. Gerson, G. Gescheidt, P. Haering, Y. Mazur, D. Freeman, H. Spreitzer, J. Daub, J. Am. Chem. Soc. 117, 11861–11866 (1995)CrossRefGoogle Scholar
  54. 54.
    L. Weiner, Y.J. Mazur, Chem. Soc. Perkin Trans. 2, 1439–1442 (1992)Google Scholar
  55. 55.
    S. Rahimipour, N. Ben-Aroya, K. Ziv, A. Chen, M. Fridkin, Y. Koch, J. Med. Chem. 46, 3965–3972 (2003)CrossRefGoogle Scholar
  56. 56.
    L. Weiner, E. Roth, Y. Mazur, I. Silman, Biochemistry 38, 11401–11405 (1999)CrossRefGoogle Scholar
  57. 57.
    C.B. Millard, V.L. Shnyrov, S. Newstead, I. Shin, R. Roth, I. Silman, L. Weiner, Protein Sci. 12, 2337–2347 (2003)CrossRefGoogle Scholar
  58. 58.
    C.G. Palivan, G. Gescheidt, L. Weiner, J. Inorg. Biochem. 86, 369 (2001)Google Scholar
  59. 59.
    R. Pinkus, L.M. Weiner, D. Daniel, Biochemistry 34, 81–89 (1995)CrossRefGoogle Scholar

Copyright information

© Springer 2009

Authors and Affiliations

  1. 1.Department of ChemistryBar-Ilan UniversityRamat GanIsrael
  2. 2.Institute for Physical and Theoretical ChemistryUniversity of TechnologyGrazAustria
  3. 3.Faculty of AgricultureThe Hebrew University of JerusalemRehovotIsrael
  4. 4.Department of Organic ChemistryWeizmann Institute of ScienceRehovotIsrael

Personalised recommendations