Applied Magnetic Resonance

, 37:505 | Cite as

EPR Characterization of a Rigid Bis-TEMPO–Bis-Ketal for Dynamic Nuclear Polarization

  • Marat Gafurov
  • Sevdalina Lyubenova
  • Vasyl Denysenkov
  • Olivier Ouari
  • Hakim Karoui
  • François Le Moigne
  • Paul Tordo
  • Thomas PrisnerEmail author


We have characterized the rigid binitroxide radical bis-TEMPO–bis-Ketal (bTbK) by continuous-wave (CW) and pulsed electron paramagnetic resonance (EPR) spectroscopy performed at X-band (9 GHz) and G-band (180 GHz) frequencies. bTbK has been successfully used for dynamic nuclear polarization (DNP)-enhanced solid-state nuclear magnetic resonance (SS-DNP) experiments based on the cross-effect, which involves two electrons and one nuclear spin, and gave very high signal enhancements. For a quantitative description of the polarization enhancements and their excitation frequency profile, a detailed information about the values and relative orientation of the magnetic hyperfine-, dipolar-, g-tensors and the exchange interaction of the two unpaired electron spins within the molecule is mandatory. We have determined these tensors and their relative orientation by CW-EPR spectra and pulsed electron double resonance experiments in frozen solution. The potential of using the cross-effect also for DNP in liquid solutions has been experimentally investigated by room-temperature high-field DNP experiments performed at 9.2 T.


Electron Paramagnetic Resonance Electron Paramagnetic Resonance Spectrum Dynamic Nuclear Polarization Hyperfine Line Dynamic Nuclear Polarization Enhancement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We want to thank Burkhard Endeward for experimental support, Deniz Sezer, Mark Prandolini for many fruitful discussions and Dominik Margraf for comments on this paper. This project is funded by the European Commission in the design study project BIO-DNP.


  1. 1.
    K.M. Salikhov (ed.), Appl. Magn. Reson. 34, 213–544 (2008)Google Scholar
  2. 2.
    A.V. Kessenikh, V.I. Lushchikov, A.A. Manenkov, Y.V. Taran, Sov. Phys. Solid State 5, 321–329 (1963) [Fiz. Tverd. Tela 5, 443–451 (1963)]Google Scholar
  3. 3.
    A. Abragam, W.G. Proctor, Compt. Rend. 246, 2253–2256 (1958)Google Scholar
  4. 4.
    T. Maly, G. Debelouchina, V. Bajaj, K.-N. Hu, Ch.-G. Joo, M.L. Mak–Jurkauskas, J.R. Sirigiri, P. van der Wel, J. Herzfeld, R. Temkin, R.G. Griffin, J. Chem. Phys. 128(052211), 1–19 (2008)Google Scholar
  5. 5.
    C. Song, K. Hu, C. Joo, T. Swager, R.G. Griffin, J. Am. Chem. Soc. 128, 11385–11390 (2006)CrossRefGoogle Scholar
  6. 6.
    K.-N. Hu, C. Song, H.-H. Yu, T.M. Swager, R.G. Griffin, J. Chem. Phys 128(052302), 1–17 (2008)Google Scholar
  7. 7.
    V.N. Parmon, A.I. Kokorin, G.M. Zhidomirov, J. Struct. Chem. 18, 104–147 (1977) [Zh. Strukt. Khim. 18, 132–177 (1977)]Google Scholar
  8. 8.
    V.N. Parmon, A.I. Kokorin, G.M. Zhidomirov, J. Magn. Reson. 28, 339–349 (1977)Google Scholar
  9. 9.
    Y. Matsuki, T. Maly, O. Ouari, H. Karoui, F. Le Moigne, E. Rizzato, S. Lyubenova, J. Herzfeld, T. Prisner, P. Tordo, R.G. Griffin, Angew. Chem. Int. Ed. 121, 5096–5100 (2009)Google Scholar
  10. 10.
    M.M. Hertel, V.P. Denysenkov, M. Bennati, T.F. Prisner, Magn. Reson. Chem 43, S248–S255 (2005)CrossRefGoogle Scholar
  11. 11.
    B. Epel, I. Gromov, S. Stoll, A. Schweiger, D. Goldfarb, Conc. Magn. Reson. 26B, 36–45 (2005)CrossRefGoogle Scholar
  12. 12.
    J. Low, Phys. Rev. 105, 793–800 (1957)CrossRefADSGoogle Scholar
  13. 13.
    O. Burghaus, M. Plato, M. Rohrer, K. Möbius, F. MacMillan, W. Lubitz, J. Phys. Chem. 97, 7639–7647 (1993)CrossRefGoogle Scholar
  14. 14.
    V.P. Denysenkov, M.J. Prandolini, A. Krahn, M. Gafurov, B. Endeward, T.F. Prisner, Appl. Magn. Reson. 34, 289–299 (2008)CrossRefGoogle Scholar
  15. 15.
    S. Stoll, A. Schweiger, J. Magn. Reson. 178, 42–55 (2006)CrossRefADSGoogle Scholar
  16. 16.
    D. Margraf, B.E. Bode, A. Marko, O. Schiemann, T.F. Prisner, Mol. Phys. 105, 2153–2160 (2007)CrossRefADSGoogle Scholar
  17. 17.
    M.A. Ondar, A.A. Dubinskii, O.Ya. Grinberg, I.A. Grigor’ev, L.B. Volodarskii, Ya.S. Lebedev, J. Struct. Chem. 22, 525–531 (1981) [Zh. Strukt. Khim. 22, 59–66 (1981)]Google Scholar
  18. 18.
    V.I. Gulin, S.A. Dikanov, Yu.D. Tsvetkov, Chem. Phys. Lett. 170, 211–216 (1990)CrossRefADSGoogle Scholar
  19. 19.
    A.W. Overhauser, Phys. Rev. 92, 411–415 (1953)zbMATHCrossRefADSGoogle Scholar
  20. 20.
    J. Potenza, Adv. Mol. Relax. Proc. 4, 229–354 (1972)CrossRefGoogle Scholar
  21. 21.
    M.J. Prandolini, V.P. Denysenkov, M. Gafurov, B. Endeward, T.F. Prisner, J. Am. Chem. Soc. 131, 6090–6092 (2009)CrossRefGoogle Scholar
  22. 22.
    M.J. Prandolini, V. Denysenkov, M. Gafurov, S. Lyubenova, B. Endeward, M. Bennati, T. Prisner, Appl. Magn. Reson. 34, 399–407 (2008)CrossRefGoogle Scholar

Copyright information

© Springer 2009

Authors and Affiliations

  • Marat Gafurov
    • 1
  • Sevdalina Lyubenova
    • 1
  • Vasyl Denysenkov
    • 1
  • Olivier Ouari
    • 2
  • Hakim Karoui
    • 2
  • François Le Moigne
    • 2
  • Paul Tordo
    • 2
  • Thomas Prisner
    • 1
    Email author
  1. 1.Institute of Physical and Theoretical Chemistry, Center of Biomolecular Magnetic ResonanceGoethe UniversityFrankfurt am MainGermany
  2. 2.Provence Chemistry Laboratory, UMR 6264Provence University, CNRSMarseilles Cedex 20France

Personalised recommendations