Advertisement

Applied Magnetic Resonance

, 37:137 | Cite as

Bicarbonate Coordinates to Mn3+ during Photo-Assembly of the Catalytic Mn4Ca Core of Photosynthetic Water Oxidation: EPR Characterization

  • Jyotishman Dasgupta
  • Alexei M. Tyryshkin
  • Sergei V. Baranov
  • G. Charles Dismukes
Article

Abstract

Assembly of the catalytic cluster, Mn4CaO x Cl y , comprising the water-oxidizing complex (WOC) of photosystem II (PSII), occurs during biogenesis in the presence of the apo-WOC-PSII complex, Mn2+, Ca2+ and Cl cofactors under weak illumination. The in vitro assembly process known as photo-activation involves several intermediates that have been resolved in previous kinetic studies. (Bi)carbonate has been shown to stimulate the rate of formation and yield of the first stable light-induced Mn3+ assembly intermediate (IM1) from Mn2+ bound to the high-affinity assembly site in apo-WOC-PSII. 13C electron spin echo envelope modulation has previously revealed that (bi)carbonate is a ligand to this Mn2+. Herein, we use parallel-mode electron paramagnetic resonance (EPR) spectroscopy to characterize the Mn3+ photoproduct, which exists as a ternary complex with carbonate at the high-affinity assembly site (in the absence of Ca2+) formulated as [CO3-Mn3+-apo-WOC-PSII]. The EPR-derived spectral parameters of IM1 (the g value, 55Mn hyperfine coupling constant (A Z) and the ligand-field splitting parameters D/E) are independent of solution pH, in marked contrast to their strong pH dependence in the absence of bicarbonate. (Bi)carbonate coordination “chemically isolates” the IM1 from external pH changes, much like that caused by Ca2+ coordination, revealing similar roles in photo-assembly. The cumulative results reveal that (bi)carbonate and Ca2+ coordination control the ligand field strength and symmetry around the initial high-affinity Mn3+, consistent with the possible formation of a μ2-oxide bridge in IM1, [Mn3+(O2−)Ca2+]. These events greatly improve the quantum yield of subsequent steps in photo-assembly.

Keywords

Electron Paramagnetic Resonance Electron Paramagnetic Resonance Spectrum Electron Paramagnetic Resonance Signal Electron Paramagnetic Resonance Spectroscopy Ligand Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors thank Drs. V.V. Klimov and Warwick Hillier for the discussions. J.D. thanks the Astrobiology Institute of National Aeronautics and Space Administration for fellowship support. This work was supported by the National Institute of Health Grant GM-39932.

References

  1. 1.
    M.J. Cann, IUBMB Life 56, 529–534 (2004)CrossRefGoogle Scholar
  2. 2.
    H. Zhang, J. Joseph, C. Felix, B. Kalyanaraman, J. Biol. Chem. 275, 14038–14045 (2000)CrossRefGoogle Scholar
  3. 3.
    E.R. Stadtman, P.B. Berlett, P.B. Chock, Proc. Natl. Acad. Sci. USA 87, 384–388 (1990)CrossRefADSGoogle Scholar
  4. 4.
    D.C. Ramirez, S.E.G. Mejiba, R.P. Mason, J. Biol. Chem. 280, 27402–27411 (2005)CrossRefGoogle Scholar
  5. 5.
    W. Hillier, I. McConnell, M.R. Badger, A. Boussac, V.V. Klimov, G.C. Dismukes, T. Wydrzynski, Biochemistry 45, 2094–2102 (2006)CrossRefGoogle Scholar
  6. 6.
    J.J.S. van Rensen, C.H. Xu, Govindjee, Physiol. Plant 105, 585–592 (1999)CrossRefGoogle Scholar
  7. 7.
    A.J. Stemler, Photosynth. Res. 73, 177–183 (2002)CrossRefGoogle Scholar
  8. 8.
    V.V. Klimov, S.V. Baranov, Biochim. Biophys. Acta 1503, 187–196 (2001)CrossRefGoogle Scholar
  9. 9.
    K.N. Ferreira, T.M. Iverson, K. Maghlaoui, J. Barber, S. Iwata, Science 303, 1831–1838 (2004)CrossRefADSGoogle Scholar
  10. 10.
    J. Barber, J.W. Murray, Phil. Trans. R. Soc. B Biol. Sci. 363, 1129–1137 (2008)CrossRefGoogle Scholar
  11. 11.
    B. Loll, J. Kern, W. Saenger, A. Zouni, J. Biesiadka, Nature 438, 1040–1044 (2005)CrossRefADSGoogle Scholar
  12. 12.
    G. Ulas, G. Olack, G.W. Brudvig, Biochemistry 47, 3073–3075 (2008)CrossRefGoogle Scholar
  13. 13.
    A. Guskov, J. Kern, A. Gabdulkhakov, M. Broser, A. Zouni, W. Saenger, Nat. Struct. Mol. Biol. 16, 334–342 (2009)CrossRefGoogle Scholar
  14. 14.
    C. Aoyama, H. Suzuki, M. Sugiura, T. Noguchi, Biochemistry 47, 2760–2765 (2008)CrossRefGoogle Scholar
  15. 15.
    J. Clausen, K. Beckmann, W. Junge, J. Messinger, Plant Physiol. 139, 1444–1450 (2005)CrossRefGoogle Scholar
  16. 16.
    D. Shevela, J.-H. Su, V.V. Klimov, J. Messinger, Biochim. Biophys. Acta 1777, 532–539 (2008)CrossRefGoogle Scholar
  17. 17.
    G. Ananyev, T. Nguyen, C. Putnam-Evans, G.C. Dismukes, Photochem. Photobiol. Sci. 4, 991–998 (2005)CrossRefGoogle Scholar
  18. 18.
    T. Wydryzinski, K. Satoh, Advances in Photosynthesis and Respiration, vol. 22 (Springer, Dodrecht, 2005)Google Scholar
  19. 19.
    F.A. Armstrong, Curr. Opin. Chem. Biol. 9, 110–117 (2005)CrossRefGoogle Scholar
  20. 20.
    O. Kruse, J. Rupprecht, J.H. Mussgnug, G.C. Dismukes, B. Hankamer, Photobiol. Photochem. Sci. 4, 957–970 (2005)CrossRefGoogle Scholar
  21. 21.
    W. Lubitz, E.J. Reijerse, J. Messinger, Energy Environ. Sci. 1, 15–31 (2008)CrossRefGoogle Scholar
  22. 22.
    S. Baranov, A. Tyryshkin, D. Katz, G. Dismukes, G. Ananyev, V. Klimov, Biochemistry 43, 2070–2079 (2004)CrossRefGoogle Scholar
  23. 23.
    S.V. Baranov, G.M. Ananyev, V.V. Klimov, G.C. Dismukes, Biochemistry 39, 6060–6065 (2000)CrossRefGoogle Scholar
  24. 24.
    G. Cheniae, I. Martin, Plant Physiol. 49, 52 (1972)CrossRefGoogle Scholar
  25. 25.
    N. Tamura, G.M. Cheniae, Biochim. Biophys. Acta 890, 179–194 (1987)CrossRefGoogle Scholar
  26. 26.
    A.-F. Miller, G. Brudvig, Biochemistry 28, 8181–8190 (1989)CrossRefGoogle Scholar
  27. 27.
    L. Zaltsman, G. Ananyev, E. Bruntrager, G.C. Dismukes, Biochemistry 36, 8914–8922 (1997)CrossRefGoogle Scholar
  28. 28.
    N. Tamura, G.M. Cheniae, FEBS Lett. 200, 231–236 (1986)CrossRefGoogle Scholar
  29. 29.
    C.W. Hoganson, D.F. Ghanotakis, G.T. Babcock, C.F. Yocum, Photosynth. Res. 22, 285–293 (1989)CrossRefGoogle Scholar
  30. 30.
    V.V. Klimov, S.V. Baranov, S.I. Allakhverdiev, FEBS Lett. 418, 243–246 (1997)CrossRefGoogle Scholar
  31. 31.
    J. Dasgupta, A.M. Tyryshkin, G.C. Dismukes, Angew. Chem. Int. Ed. 46, 8028–8031 (2007)CrossRefGoogle Scholar
  32. 32.
    K.A. Campbell, D.A. Force, P.J. Nixon, F. Dole, B.A. Diner, R.D. Britt, J. Am. Chem. Soc. 122, 3754–3761 (2000)CrossRefGoogle Scholar
  33. 33.
    A.M. Tyryshkin, R.K. Watt, S.V. Baranov, J. Dasgupta, M.P. Hendrich, G.C. Dismukes, Biochemistry 45, 12876–12889 (2006)CrossRefGoogle Scholar
  34. 34.
    A. Abragam, B. Bleaney, Electron Paramagnetic Resonance of Transition Ions (Clarendon, Oxford, 1986)Google Scholar
  35. 35.
    M. Maneiro, M.R. Bermejo, R. Fondo, A.M. Gonzalez, J. Sanmartin, J.C. Garcia-Monteagudo, R.G. Pritchard, A.M. Tyryshkin, Polyhedron 20, 711–719 (2001)CrossRefGoogle Scholar
  36. 36.
    G.M. Ananyev, L. Zaltsman, C. Vasko, G.C. Dismukes, Biochim. Biophys. Acta 1503, 52–68 (2001)CrossRefGoogle Scholar
  37. 37.
    J. Dasgupta, Ph.D. thesis, Princeton University, Princeton, USA, 2006Google Scholar
  38. 38.
    J. Dasgupta, G.M. Ananyev, G.C. Dismukes, Coord. Chem. Rev. 252, 347–360 (2008)CrossRefGoogle Scholar
  39. 39.
    T. Ono, Biochim. Biophys. Acta 1503, 40–51 (2001)CrossRefGoogle Scholar
  40. 40.
    J. Dasgupta, A.M. Tyryshkin, Y.N. Kozlov, V.V. Klimov, G.C. Dismukes, J. Phys. Chem. B 110, 5099–5111 (2006)CrossRefGoogle Scholar
  41. 41.
    Y.N. Kozlov, K.S. Zharmukhamedov, K.G. Tikhonov, J. Dasgupta, A.A. Kazakova, G.C. Dismukes, V.V. Klimov, Phys. Chem. Chem. Phys. 6, 4905–4911 (2004)CrossRefGoogle Scholar
  42. 42.
    J. Yano, J. Kern, K.D. Irrgang, M.J. Latimer, U. Bergmann, P. Glatzel, Y. Pushkar, J. Biesiadka, B. Loll, K. Sauer, J. Messinger, A. Zouni, V.K. Yachandra, Proc. Natl. Acad. Sci. USA 102, 12047–12052 (2005)CrossRefADSGoogle Scholar
  43. 43.
    G.C. Dismukes, V.V. Klimov, S.V. Baranov, Y.N. Kozlov, J. Dasgupta, A.M. Tyryshkin, Proc. Natl. Acad. Sci. USA 98, 2170–2175 (2001)CrossRefADSGoogle Scholar
  44. 44.
    L. Kalman, R. LoBrutto, J.P. Allen, J.C. Williams, Biochemistry 42, 11016–11022 (2003)CrossRefGoogle Scholar
  45. 45.
    K. Tang, J.C. Williams, J.P. Allen, L. Kalman, Biophys. J. 96, 3295–3304 (2009)CrossRefADSGoogle Scholar

Copyright information

© Springer 2009

Authors and Affiliations

  • Jyotishman Dasgupta
    • 1
    • 4
  • Alexei M. Tyryshkin
    • 2
  • Sergei V. Baranov
    • 1
    • 3
  • G. Charles Dismukes
    • 1
    • 5
  1. 1.Chemistry DepartmentPrinceton UniversityPrincetonUSA
  2. 2.Department of Electrical EngineeringPrinceton UniversityPrincetonUSA
  3. 3.Department of NeurosurgeryBrigham and Women’s HospitalBostonUSA
  4. 4.University of CaliforniaBerkeleyUSA
  5. 5.Department of Chemistry & Chemical Biology Rutgers, The State University of New JerseyPiscatawayUSA

Personalised recommendations