Applied Magnetic Resonance

, 37:65

Incorporation of 2,3-Disubstituted-1,4-Naphthoquinones into the A1 Binding Site of Photosystem I Studied by EPR and ENDOR Spectroscopy

  • Art van der Est
  • Yulia Pushkar
  • Irina Karyagina
  • Branden Fonovic
  • Travis Dudding
  • Jens Niklas
  • Wolfgang Lubitz
  • John H. Golbeck
Article

Abstract

Transient electron paramagnetic resonance and pulsed electron-nuclear double resonance (ENDOR) spectra of the state \( P_{700}^{ \cdot + } A_{1}^{ \cdot - } \) in photosystem I containing a series of non-native naphthoquinones (NQs) are presented. Previous studies have shown that quinones bind to the A1 site with only one of their carbonyl groups H-bonded to the protein and that the asymmetric H-bond produces an odd alternant distribution of the spin density within the quinone. It is known that the native phylloquinone binds with its methyl group meta and its phytyl tail ortho to the H-bonded carbonyl. Monosubstituted NQs with short alkyl chains have been found to bind preferentially with their alkyl side groups meta to the H-bonded carbonyl. The selectivity of the binding site toward methyl and short chain substituents is studied by incorporating disubstituted NQs that have a methyl group at the 2-position and a short chain at the 3-position of the quinone ring. The hyperfine couplings (hfcs) of the methyl group protons are sensitive to the spin density distribution on the quinone and are used to deduce the position of the methyl group relative to the H-bonded carbonyl. The measured methyl proton hfcs indicate that the disubstituted quinones bind exclusively with their methyl group in the meta position relative to the H-bonded carbonyl and no evidence for binding with the methyl group in the ortho position is found. The disubstituted quinones have also been chosen to study the effect of electron withdrawing substituents on the spin density distribution. When the short chain contains electronegative atoms such as sulfur or chlorine, the methyl proton hfcs of the quinone in the A1 binding site are found to be significantly larger than those of 2-methyl-1,4-naphthoquinone and phylloquinone in the same environment. Solution ENDOR measurements of the quinone radical anions in isopropanol and density functional theory (DFT) calculations in vacuo show that this increase in the hfcs is mostly intrinsic to the quinones due to the electron-withdrawing ability of the short chain and is not a result of differences in the binding to the protein. The DFT calculations suggest that the main reason for the increased methyl proton hfcs is delocalization of the singly occupied molecular orbital onto the side chain, which leads to an increase of the spin density on the neighboring carbon, which carries methyl group.

References

  1. 1.
    J. Golbeck (ed.), Photosystem I. The Light-Driven Plastocyanin:Ferredoxin Oxidoreductase (Springer, Dordrecht, 2006)Google Scholar
  2. 2.
    T. Wydrzynski, K. Satoh (eds.), Photosystem II. The Light-Driven Water:Plastoquinone Oxidoreductase (Springer, Dordrecht, 2005)Google Scholar
  3. 3.
    N. Srinivasan, J.H. Golbeck, Biochim. Biophys. Acta 1787, 1057–1088 (2009)Google Scholar
  4. 4.
    V. Petrouleas, A.R. Crofts, in Photosystem II. The Light-Driven Water:Plastoquinone Oxidoreductase, ed. by T. Wydrzynski, K. Satoh (Springer, Dordrecht, 2005), pp. 177–206Google Scholar
  5. 5.
    A. Krieger, A.W. Rutherford, G.N. Johnson, Biochim Biophys. Acta 1229, 193–201 (1995)CrossRefGoogle Scholar
  6. 6.
    K. Brettel, Biochim. Biophys. Acta 1318, 322–373 (1997)CrossRefGoogle Scholar
  7. 7.
    R.C. Prince, M.R. Gunner, P.L. Dutton, in Function of Quinones in Energy Conserving Systems, ed. by B.L. Trumpower (Academic Press, New York, 1982)Google Scholar
  8. 8.
    R.C. Prince, P.L. Dutton, J.M. Bruce, FEBS Lett. 160, 273–276 (1983)CrossRefGoogle Scholar
  9. 9.
    T.W. Johnson, G.Z. Shen, B. Zybailov, D. Kolling, R. Reategui, S. Beauparlant, I.R. Vassiliev, D.A. Bryant, A.D. Jones, J.H. Golbeck, P.R. Chitnis, J. Biol. Chem. 275, 8523–8530 (2000)CrossRefGoogle Scholar
  10. 10.
    B. Zybailov, A. van der Est, S.G. Zech, C. Teutloff, T.W. Johnson, G.Z. Shen, R. Bittl, D. Stehlik, P.R. Chitnis, J.H. Golbeck, J. Biol. Chem. 275, 8531–8539 (2000)CrossRefGoogle Scholar
  11. 11.
    A.Y. Semenov, I.R. Vassiliev, A. van der Est, M.D. Mamedov, B. Zybailov, G.Z. Shen, D. Stehlik, B.A. Diner, P.R. Chitnis, J.H. Golbeck, J. Biol. Chem. 275, 23429–23438 (2000)CrossRefGoogle Scholar
  12. 12.
    I. Sieckman, A. van der Est, H. Bottin, P. Setif, D. Stehlik, FEBS Lett. 284, 98–102 (1991)CrossRefGoogle Scholar
  13. 13.
    R.R. Rustandi, S.W. Snyder, J. Biggins, J.R. Norris, M.C. Thurnauer, Biochim. Biophys. Acta 1101, 311–320 (1992)CrossRefGoogle Scholar
  14. 14.
    R.R. Rustandi, S.W. Snyder, L.L. Feezel, T.J. Michalski, J.R. Norris, M.C. Thurnauer, J. Biggins, Biochemistry 29, 8030–8032 (1990)CrossRefGoogle Scholar
  15. 15.
    S.W. Snyder, R.R. Rustandi, J. Biggins, J.R. Norris, M.C. Thurnauer, Proc. Natl. Acad. Sci. USA 88, 9895–9896 (1991)CrossRefADSGoogle Scholar
  16. 16.
    J. Biggins, P. Mathis, Biochemistry 27, 1494–1500 (1988)CrossRefGoogle Scholar
  17. 17.
    S. Itoh, M. Iwaki, Biochemistry 30, 5340–5346 (1991)CrossRefGoogle Scholar
  18. 18.
    M. Iwaki, S. Itoh, in Electron Transfer in Inorganic, Organic and Biological Systems: eds. by JR. Bolton, N. Mataga, GL. McLendon (ACS, Washington, USA, 1991), pp 163–178Google Scholar
  19. 19.
    T.W. Johnson, B. Zybailov, A.D. Jones, R. Bittl, S. Zech, D. Stehlik, J.H. Golbeck, P.R. Chitnis, J. Biol. Chem. 276, 39512–39521 (2001)CrossRefGoogle Scholar
  20. 20.
    Y.N. Pushkar, J.H. Golbeck, D. Stehlik, H. Zimmermann, J. Phys. Chem. B 108, 9439–9448 (2004)CrossRefGoogle Scholar
  21. 21.
    J. Niklas, B. Epel, M.L. Antonkine, S. Sinnecker, M.E. Pandelia, W. Lubitz, J. Phys. Chem. B 113, 10367–10379 (2009)Google Scholar
  22. 22.
    D. Stehlik, in Photosystem I. The Light-Driven Plastocyanin:Ferredoxin Oxidoreductase, ed. by J. Golbeck (Springer, Dordrecht, 2006), pp. 361–386Google Scholar
  23. 23.
    A. van der Est, Transient EPR: using spin polarization in sequential radical pairs to study electron transfer in photosynthesis. Photosynth Res (2009)Google Scholar
  24. 24.
    O.G. Poluektov, S.V. Paschenko, L.M. Utschig, K.V. Lakshmi, M.C. Thurnauer, J. Am. Chem. Soc. 127, 11910–11911 (2005)CrossRefGoogle Scholar
  25. 25.
    A. van der Est, I. Sieckmann, W. Lubitz, D. Stehlik, Chem. Phys. 194, 349–359 (1995)CrossRefADSGoogle Scholar
  26. 26.
    Y. Sakuragi, B. Zybailov, G.Z. Shen, A.D. Jones, P.R. Chitnis, A. van der Est, R. Bittl, S. Zech, D. Stehlik, J.H. Golbeck, D.A. Bryant, Biochemistry 41, 394–405 (2002)CrossRefGoogle Scholar
  27. 27.
    Y.N. Pushkar, D. Stehlik, M. van Gastel, W. Lubitz, J. Mol. Struct. 700, 233–241 (2004)CrossRefADSGoogle Scholar
  28. 28.
    Y.N. Pushkar, O. Ayzatulin, D. Stehlik, Appl. Magn. Reson. 28, 195–211 (2005)CrossRefGoogle Scholar
  29. 29.
    Y.N. Pushkar, I. Karyagina, D. Stehlik, S. Brown, A. van der Est, J. Biol. Chem. 280, 12382–12390 (2005)CrossRefGoogle Scholar
  30. 30.
    C.E. Fursman, C. Teutloff, R. Bittl, J. Phys. Chem. B 106, 9679–9686 (2002)CrossRefGoogle Scholar
  31. 31.
    R. Bittl, S. Zech, C. Teutloff, W. Krabben, W. Lubitz, in Photosynthesis: Mechanisms and Effects, ed. by G. Garab (Kluwer, Dordrecht, 1998), pp. 509–514Google Scholar
  32. 32.
    C. Teutloff, R. Bittl, W. Lubitz, Appl. Magn. Reson. 26, 5–21 (2004)CrossRefGoogle Scholar
  33. 33.
    B. Epel, J. Niklas, M.L. Antonkine, W. Lubitz, Appl. Magn. Reson. 30, 311–327 (2006)CrossRefGoogle Scholar
  34. 34.
    S.E.J. Rigby, M.C.W. Evans, P. Heathcote, Biochemistry 35, 6651–6656 (1996)CrossRefGoogle Scholar
  35. 35.
    C. Teutloff, F. MacMillan, R. Bittl, F. Lendzian, W. Lubitz, in Photosynthesis: Mechanisms and Effects, ed. by G. Garab (Kluwer, Dordrecht, 1998), pp. 607–610Google Scholar
  36. 36.
    W. Lubitz, G. Feher, Appl. Magn. Reson. 17, 1–48 (1999)CrossRefGoogle Scholar
  37. 37.
    Y.N. Pushkar, S.G. Zech, D. Stehlik, S. Brown, A. van der Est, H. Zimmermann, J. Phys. Chem. B 106, 12052–12058 (2002)CrossRefGoogle Scholar
  38. 38.
    S.G. Zech, A.J. van der Est, R. Bittl, Biochemistry 36, 9774–9779 (1997)CrossRefGoogle Scholar
  39. 39.
    B. Epel, J. Niklas, S. Sinnecker, H. Zimmermann, W. Lubitz, J. Phys. Chem. B 110, 11549–11560 (2006)CrossRefGoogle Scholar
  40. 40.
    J.M. Frisch, W.G. Trucks, B.H. Schlegel, E.G. Scuseria, A.M. Robb, R.J. Cheeseman, A.J.J. Montgomery, T. Vreven, N.K. Kudin, C.J. Burant, M.J. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, A.G. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, E.J. Knox, P.H. Hratchian, B.J. Cross, C. Adamo, J. Jaramillo, R. Gomperts, E.R. Stratmann, O. Yazyev, J.A. Austin, R. Cammi, C. Pomelli, W.J. Ochterski, Y.P. Ayala, K. Morokuma, A.G. Voth, J.J. Dannenberg, G.V. Zakrzewski, S. Dapprich, D.A. Daniels, C.M. Strain, O. Farkas, K.D. Malick, D.A. Rabuck, K. Raghavachari, B.J. Foresman, V.J. Ortiz, Q. Cui, G.A. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, L.R. Martin, J.D. Fox, T. Keith, A.M. Al-Laham, Y.C. Peng, A. Nanayakkara, M. Challacombe, P.W.M. Gill, B. Johnson, W. Chen, W.M. Wong, C. Gonzalez, J.A. Pople, Gaussian 03, Revision C.02 (Gaussian Inc., Wallingford, 2004)Google Scholar
  41. 41.
    S.M. Mattar, A.H. Emwas, A.D. Stephens, Chem. Phys. Lett. 363, 152–160 (2002)CrossRefADSGoogle Scholar
  42. 42.
    A.D. Becke, J. Chem. Phys. 98, 1372–1377 (1993)CrossRefADSGoogle Scholar
  43. 43.
    C.T. Lee, W.T. Yang, R.G. Parr, Phys. Rev. B 37, 785–789 (1988)CrossRefADSGoogle Scholar
  44. 44.
    M.M. Francl, W.J. Pietro, W.J. Hehre, J.S. Binkley, M.S. Gordon, D.J. Defrees, J.A. Pople, J. Chem. Phys. 77, 3654–3665 (1982)CrossRefADSGoogle Scholar
  45. 45.
    P.C. Hariharan, J.A. Pople, Theor. Chim. Acta 28, 213–222 (1973)CrossRefGoogle Scholar
  46. 46.
    P.C. Hariharan, J.A. Pople, Mol. Phys. 27, 209–214 (1974)CrossRefADSGoogle Scholar
  47. 47.
    W.J. Hehre, R. Ditchfie, J.A. Pople, J. Chem. Phys. 56, 2257–2261 (1972)CrossRefADSGoogle Scholar
  48. 48.
    V.A. Rassolov, J.A. Pople, M.A. Ratner, T.L. Windus, J. Chem. Phys. 109, 1223–1229 (1998)CrossRefADSGoogle Scholar
  49. 49.
    A. van der Est, Biochim. Biophys. Acta 1507, 212–225 (2001)CrossRefGoogle Scholar
  50. 50.
    Y.E. Kandrashkin, W. Vollmann, D. Stehlik, K. Salikhov, A. Van der Est, Mol. Phys. 100, 1431–1443 (2002)CrossRefADSGoogle Scholar
  51. 51.
    S.G. Zech, W. Hofbauer, A. Kamlowski, P. Fromme, D. Stehlik, W. Lubitz, R. Bittl, J. Phys. Chem. B 104, 9728–9739 (2000)CrossRefGoogle Scholar
  52. 52.
    W. Xu, P. Chitnis, A. Valieva, A. van der Est, Y.N. Pushkar, M. Krzystyniak, C. Teutloff, S.G. Zech, R. Bittl, D. Stehlik, B. Zybailov, G.Z. Shen, J.H. Golbeck, J. Biol. Chem. 278, 27864–27875 (2003)CrossRefGoogle Scholar
  53. 53.
    P. Jordan, P. Fromme, H.T. Witt, O. Klukas, W. Saenger, N. Krauss, Nature 411, 909–917 (2001)CrossRefADSGoogle Scholar

Copyright information

© Springer 2009

Authors and Affiliations

  • Art van der Est
    • 1
  • Yulia Pushkar
    • 2
  • Irina Karyagina
    • 3
  • Branden Fonovic
    • 1
  • Travis Dudding
    • 1
  • Jens Niklas
    • 4
  • Wolfgang Lubitz
    • 4
  • John H. Golbeck
    • 5
  1. 1.Department of ChemistryBrock UniversitySt. CatharinesCanada
  2. 2.Department of PhysicsPurdue UniversityWest LafayetteUSA
  3. 3.Max Planck Institute for Biophysical ChemistryGöttingenGermany
  4. 4.Max-Planck-Institut für Bioanorganische ChemieMülheim an der RuhrGermany
  5. 5.Department of Biochemistry and Molecular Biology and Department of ChemistryThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations