Advertisement

Applied Magnetic Resonance

, Volume 36, Issue 1, pp 81–88 | Cite as

Influence of Copper(II) Ions on Radicals in DOPA–Melanin

  • Lidia Najder-Kozdrowska
  • Barbara Pilawa
  • Andrzej B. WięckowskiEmail author
  • Ewa Buszman
  • Dorota Wrześniok
Article

Abstract

DOPA–melanin (DOPA = 3,4-dihydroxyphenyl-alanine) complexes with Cu(II) cations were studied by electron paramagnetic resonance (EPR) spectroscopy. After the addition of metal cations to the melanin polymer, the EPR spectra parameters were measured. The axial g-factor values are g || = 2.20 and \( g_{ \bot } = 2.0 5 \). Since \( g_{||} > g_{ \bot } > 2 \), the ground state orbital of the unpaired electron of the Cu(II) complex is \( \left| {{{x}}^{ 2} } \right. \, - \, \left. {{{y}}^{ 2} } \right\rangle \). Square coordination of these cations in melanin is proposed. The influence of the Cu(II) concentration in solution used during synthesis on the concentration of melanin radicals was investigated. Cu(II) cations causes the decrease in the paramagnetic center concentration in melanin. The Cu(II) EPR spectra are not saturated within the microwave power range of 0.7–70 mW used in our experiment.

Keywords

Electron Paramagnetic Resonance Electron Paramagnetic Resonance Spectrum Dopa Microwave Power Electron Paramagnetic Resonance Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    R.A. Nicolaus, Melanins, in Chemistry of Natural Products, ed. by E. Lederer, E. Lederer (Hermann, Paris, Paris, 1968)Google Scholar
  2. 2.
    B.S. Larson, Pigment Cell Res. 6, 127–133 (1993)CrossRefGoogle Scholar
  3. 3.
    K. Wakamatsu, S. Ito, Pigment Cell Res. 15, 174–183 (2002)CrossRefGoogle Scholar
  4. 4.
    Ł. Łukiewicz, K. Reszka, Z. Matuszak, Bioelectrochem. Bioenerg. 7, 153–165 (1980)CrossRefGoogle Scholar
  5. 5.
    E. Buszman, M. Latocha, W. Namysłowski, B. Pilawa, T. Wilczok, Ann. Acad. Med. Silesia 34, 11–27 (1998)Google Scholar
  6. 6.
    S.S. Chio, J.S. Hyde, R.C. Sealy, Archiv. Biochem. Biophys. 215(1), 100–106 (1982)CrossRefGoogle Scholar
  7. 7.
    E. Chodurek, Doctor Thesis, Medical Academy of Silesia, Katowice, 1997Google Scholar
  8. 8.
    E. Chodurek, B. Pilawa, A. Dzierżęga-Lęcznar, S. Kurkiewicz, L. Świątkowska, T. Wilczok, J. Anal. Appl. Pyrol. 70, 43–54 (2003)CrossRefGoogle Scholar
  9. 9.
    A. Dzierżęga-Lęcznar, K. Stępień, E. Chodurek, S. Kurkiewicz, L. Świątkowska, T. Wilczok, J. Anal. Appl. Pyrol. 70, 457–467 (2003)CrossRefGoogle Scholar
  10. 10.
    C.C. Felix, J.S. Hyde, T. Sarna, R.C. Sealy, J. Am. Chem. Soc. 100, 3922–3926 (1978)CrossRefGoogle Scholar
  11. 11.
    B. Pilawa, M. Latocha, E. Buszman, T. Wilczok, Appl. Magn. Reson. 25, 105–111 (2003)CrossRefGoogle Scholar
  12. 12.
    W. Froncisz, T. Sarna, J.S. Hyde, Archiv. Biochem. Biophys. 202(1), 289–303 (1980)CrossRefGoogle Scholar
  13. 13.
    E. Buszman, B. Pilawa, T. Witoszyńska, M. Latocha, T. Wilczok, Appl. Magn. Reson. 24, 401–407 (2003)CrossRefGoogle Scholar
  14. 14.
    M. Pasenkiewicz-Gierula, W. Korytowski, J. Gierula, Zeszyty Naukowe UJ, Prace z Biologii Molekularnej 11, 111–118 (1985)Google Scholar
  15. 15.
    A. Gergely, T. Kiss, Inorg. Chim. Acta 16, 51–59 (1976)CrossRefGoogle Scholar
  16. 16.
    F. Binns, R.F. Chapman, N.C. Robson, G.A. Swan, A. Waggot, J. Chem. Soc. C, 1128–1134 (1970)Google Scholar
  17. 17.
    B. Pilawa, A.B. Więckowski, S. Duber, Erdol Kohle Erdgas Petrochemie Hydrocarbon Technol 43, 240–245 (1990)Google Scholar
  18. 18.
    T. Sarna, J.S. Hyde, H.M. Swartz, Science 192, 1132–1134 (1976)CrossRefADSGoogle Scholar
  19. 19.
    J.S. Leigh, J. Chem. Phys. 52, 2608–2612 (1970)CrossRefADSGoogle Scholar
  20. 20.
    E. Buszman, B. Pilawa, M. Zdybel, D. Wrześniok, A. Grzegorczyk, T. Wilczok, Chem. Phys. Lett. 403, 22–28 (2005)CrossRefADSGoogle Scholar
  21. 21.
    B. Pilawa, E. Chodurek, T. Wilczok, Appl. Magn. Reson. 24, 417–422 (2003)CrossRefGoogle Scholar
  22. 22.
    G.M. Zhidomirov, Ya.S. Lebedev, Dobryakov, N.Ya, Shteinshneider, A.K. Tshirkov, W.A. Gubanov, Interpretatsiya slozhnykh spektrov EPR (Moskva: Izdatel’stvo Nauka, 1975), pp. 71–94Google Scholar
  23. 23.
    S.K. Hoffmann, J. Goslar, L.S. Szczepaniak, M. Osman, in Proceedings of the Conference Radio- and Microwave Spectroscopy RAMIS-83, ed. by N. Piślewski (University Press, Poznań, 1985), pp. 307–314Google Scholar
  24. 24.
    B.J. Hathaway, J. Chem. Soc. Dalton Trans. 1196–1199 (1972)Google Scholar
  25. 25.
    B.J. Hathaway, Coord. Chem. Rew. 35, 211–252 (1981)CrossRefGoogle Scholar
  26. 26.
    S. Kasselouri, A. Garoufis, G. Kalkanis, Transition Met. Chem. 18, 531–536 (1993)CrossRefGoogle Scholar
  27. 27.
    J. Fang-fang, Z. Pu-su, W. Huan-xiang, L. Lu-de, Bull. Korean Chem. Soc. 25(5), 673–675 (2004)CrossRefGoogle Scholar
  28. 28.
    A. Castinerais, S. Balboa, R. Carballo, J. Niclos, Z. Anorg. Allg. Chem. 628, 2353–2359 (2002)CrossRefGoogle Scholar
  29. 29.
    A. Więckowski, PTPN Fiz. Diel. i Radiospektr. 7(1), 101–119 (1975)Google Scholar

Copyright information

© Springer 2009

Authors and Affiliations

  • Lidia Najder-Kozdrowska
    • 1
  • Barbara Pilawa
    • 2
  • Andrzej B. Więckowski
    • 1
    Email author
  • Ewa Buszman
    • 3
  • Dorota Wrześniok
    • 3
  1. 1.Division of Experimental Physics, Faculty of Physics and Astronomy, Institute of PhysicsUniversity of Zielona GóraZielona GóraPoland
  2. 2.Department of Biophysics, School of PharmacyMedical University of SilesiaSosnowiecPoland
  3. 3.Department of Pharmaceutical Chemistry, School of PharmacyMedical University of SilesiaSosnowiecPoland

Personalised recommendations