Advertisement

Applied Magnetic Resonance

, Volume 34, Issue 3–4, pp 237–263 | Cite as

High-Field Dynamic Nuclear Polarization for Solid and Solution Biological NMR

  • A. B. Barnes
  • G. De Paëpe
  • P. C. A. van der Wel
  • K.-N. Hu
  • C.-G. Joo
  • V. S. Bajaj
  • M. L. Mak-Jurkauskas
  • J. R. Sirigiri
  • J. Herzfeld
  • R. J. Temkin
  • R. G. Griffin
Article

Abstract.

Dynamic nuclear polarization (DNP) results in a substantial nuclear polarization enhancement through a transfer of the magnetization from electrons to nuclei. Recent years have seen considerable progress in the development of DNP experiments directed towards enhancing sensitivity in biological nuclear magnetic resonance (NMR). This review covers the applications, hardware, polarizing agents, and theoretical descriptions that were developed at the Francis Bitter Magnet Laboratory at Massachusetts Institute of Technology for high-field DNP experiments. In frozen dielectrics, the enhanced nuclear polarization developed in the vicinity of the polarizing agent can be efficiently dispersed to the bulk of the sample via 1H spin diffusion. This strategy has been proven effective in polarizing biologically interesting systems, such as nanocrystalline peptides and membrane proteins, without leading to paramagnetic broadening of the NMR signals. Gyrotrons have been used as a source of high-power (5–10 W) microwaves up to 460 GHz as required for the DNP experiments. Other hardware has also been developed allowing in situ microwave irradiation integrated with cryogenic magic-angle-spinning solid-state NMR. Advances in the quantum mechanical treatment are successful in describing the mechanism by which new biradical polarizing agents yield larger enhancements at higher magnetic fields. Finally, pulsed methods and solution experiments should play a prominent role in the future of DNP.

Keywords

Nuclear Magnetic Resonance High Magnetic Field Dynamic Nuclear Polarization Nuclear Magnetic Resonance Signal Polarize Agent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abragam, A., Goldman, M.: Rep. Prog. Phys. 41, 395 (1978)CrossRefADSGoogle Scholar
  2. Onnes, K.H.: Leiden Commun. 108, 3–23 (1908)Google Scholar
  3. Bridgeman, P.W.: Collected Experimental Papers, vol. 3. Harvard University Press, Harvard (1964)Google Scholar
  4. Overhauser, A.W.: Phys. Rev. 92, 411–415 (1953)MATHCrossRefADSGoogle Scholar
  5. Carver, T.P., Slichter, C.P.: Phys. Rev. 102, 975–980 (1956)CrossRefADSGoogle Scholar
  6. Abragam, A., Proctor, W.G.: C. R. Acad. Sci. 246, 2253 (1959)Google Scholar
  7. Afeworki, M., Mckay, R.A., Schaefer, J.: Macromolecules 25, 4084–4091 (1992)CrossRefGoogle Scholar
  8. Singel, D.J., Seidel, H., Kendrick, R.D., Yannoni, C.S.: J. Magn. Reson. 81, 145–161 (1989)Google Scholar
  9. Wind, R.A., Duijvestijn, M.J., Lugt, C.V.D., Manenschijn, A., Vriend, J.: Prog. Nucl. Magn. Reson. Spectrosc. 17, 33–67 (1985)CrossRefGoogle Scholar
  10. Dorn, H.C., Gitti, R., Tsai, K.H., Glass, T.E.: Chem. Phys. Lett. 155, 227–232 (1989)CrossRefADSGoogle Scholar
  11. Maly, T., Debelouchina, G.T., Bajaj, V.S., Mak-Jurkauskas, M.L., Sirigiri, J.R., Hu, K.-N., van der Wel, P.C.A., Herzfeld, J., Temkin, R.J., Griffin, R.G.: J. Chem. Phys. 128, 052211 (2008)CrossRefADSGoogle Scholar
  12. Rosay, M., Zeri, A.C., Astrof, N.S., Opella, S.J., Herzfeld, J., Griffin, R.G.: J. Am. Chem. Soc. 123, 1010–1011 (2001)CrossRefGoogle Scholar
  13. van der Wel, P.C.A., Hu, K.-N., Lewandoswki, J., Griffin, R.G.: J. Am. Chem. Soc. 128, 10840–10846 (2006)CrossRefGoogle Scholar
  14. Bajaj, V.S., Hornstein, M.K., Kreischer, K.E., Sirigiri, J.R., Woskov, P.P., Mak, M., Herzfeld, J., Temkin, R.J., Griffin, R.G.: J. Magn. Reson. 190, 86–114 (2007)Google Scholar
  15. Rosay, M., Lansing, J.C., Haddad, K.C., Bachovchin, W.W., Herzfeld, J., Temkin, R.J., Griffin, R.G.: J. Am. Chem. Soc. 125, 13626–13627 (2003)CrossRefGoogle Scholar
  16. Hu, K., Yu, Y.-Y., Swager, T., Griffin, R.G.: J. Am. Chem. Soc. 126, 10844–10845 (2004)CrossRefGoogle Scholar
  17. Song, C., Hu, K.-N., Swager, T.M., Griffin, R.G.: J. Am Chem. Soc. 128, 11385–11390 (2006)CrossRefGoogle Scholar
  18. Hall, D.A., Maus, D.C., Gerfen, G.J., Inati, S.J., Becerra, L.R., Dahlquist, F.W., Griffin, R.G.: Science 276, 930–932 (1997)CrossRefGoogle Scholar
  19. Weis, V., Bennati, M., Rosay, M., Bryant, J.A., Griffin, R.G.: J. Magn. Reson. 140, 293–299 (1999)CrossRefADSGoogle Scholar
  20. Becerra, L.R., Gerfen, G.J., Temkin, R.J., Singel, D.J., Griffin, R.G.: Phys. Rev. Lett. 71, 3561–3564 (1993)CrossRefADSGoogle Scholar
  21. Bloembergen, N., Purcell, E.M., Pound, R.V.: Phys. Rev. 73, 679–712 (1948)CrossRefADSGoogle Scholar
  22. Long, H.W., Tycko, R.: J. Am. Chem. Soc. 120, 7039–7048 (1998)CrossRefGoogle Scholar
  23. Rosay, M., Weis, V., Kreischer, K.E., Temkin, R.J., Griffin, R.G.: J. Am. Chem. Soc. 124, 3214–3215 (2002)CrossRefGoogle Scholar
  24. Ernst, R.R., Bodenhausen, G., Wokaun, A.: Principles of Nuclear Magnetic Resonance in One and Two Dimensions. Clarendon, Oxford (1991)Google Scholar
  25. Pines, A., Gibby, M.G., Waugh, J.S.: J. Chem. Phys. 59, 569–590 (1973)CrossRefADSGoogle Scholar
  26. Nelson, R., Saway, M.R., Balbirnie, M., Madsen, A.O., Riekel, C., Grothe, R., Eisenberg, D.: Nature 435, 773–778 (2005)CrossRefADSGoogle Scholar
  27. Sawaya, M.R., Sambashivan, S., Nelson, R., Ivanova, M.I., Sievers, S.A., Apostol, M.I., Thompson, M.J., Balbirnie, M., Wiltzius, J.J.W., McFarlane, H.T., Madsen, A.O., Riekel, C., Eisenberg, D.: Nature 447, 453–457 (2007)CrossRefADSGoogle Scholar
  28. van der Wel, P.C.A., Lewandoswki, J., Griffin, R.G.: J. Am. Chem. Soc. 128, 10840–10846 (2007)CrossRefGoogle Scholar
  29. Mak-Jurkauskas, M.L., Bajaj, V.S., Hornstein, M.K., Belenky, M., Temkin, R.J., Griffin, R.G., Herzfeld, J.: Proc. Natl. Acad. Sci. USA 105, 883–888 (2008)CrossRefADSGoogle Scholar
  30. Wind, R.A., Anthonio, F.E., Duijvestijn, M.J., Smidt, J., Trommel, J., Vette, G.M.C.D.: J. Magn. Reson. 52, 424–434 (1983)Google Scholar
  31. McKay, R.A.: US patent nr. 4, 446, 431 (1984)Google Scholar
  32. Allen, P.J., Creuzet, F., de Groot, H.J.M., Griffin, R.G.: J. Magn. Reson. 92, 614–617 (1991)Google Scholar
  33. Kartikeyan, M.V., Borie, E., Thumm, M.K.A.: Gyrotrons: High Power Microwave Sources and Technologies, p. 227. Springer, New York (2004)Google Scholar
  34. Nusinovich, G.S.: Introduction to the Physics of Gyrotrons, p. 335. Johns Hopkins University Press, Baltimore, Md. (2004)Google Scholar
  35. Hornstein, M.K., Bajaj, V.S., Griffin, R.G., Temkin, R.J.: IEEE Trans. Plasma Sci. 34, 524–533 (2006)CrossRefADSGoogle Scholar
  36. Woskov, P.W., Bajaj, V.S., Hornstein, M.K., Temkin, R.J., Griffin, R.G.: IEEE Trans. Microwave Theory Tech. 53, 1863–1869 (2005)CrossRefGoogle Scholar
  37. Kreischer, K.E., Farrar, C., Griffin, R.G., Temkin, R.J., Vieregg, J., in: Lombardo, L. (ed.) Proceedings of 24th International Conference on Infrared and Millimeter Waves. UC Davis, Monterey, Calif. (1999)Google Scholar
  38. Hwang, C.F., Hill, D.A.: Phys. Rev. Lett. 18, 110–112 (1967)CrossRefADSGoogle Scholar
  39. Hwang, C.F., Hill, D.A.: Phys. Rev. Lett. 19, 1011–1013 (1967)CrossRefADSGoogle Scholar
  40. Kessenikh, A.V., Luschikov, V.L., Manenkov, A.A., Taran, Y.V.: Sov. Phys. Solid State 5, 321–329 (1963)Google Scholar
  41. Kessenikh, A.V., Manenkov, A.A., Pyatnitskii, G.I.: Sov. Phys. Solid State 6, 641–643 (1964)Google Scholar
  42. Wollan, D.S.: Phys. Rev. B 13, 3671–3685 (1976)CrossRefADSGoogle Scholar
  43. Atsarkin, V.A.: Sov. Phys. Solid State 21, 725–744 (1978)Google Scholar
  44. Hu, K.: Polarizing Agents for High-Frequency Dynamic Nuclear Polarization – Development and Applications. Massachusetts Institute of Technology, Cambridge, Mass. (2006)Google Scholar
  45. Becerra, L.R., Gerfen, G.J., Temkin, R.J., Singel, D.J., Griffin, R.G.: Phys. Rev. Lett. 71, 3561–3564 (1993)CrossRefADSGoogle Scholar
  46. Bajaj, V.S., Farrar, C.T., Hornstein, M.K., Mastovsky, I., Vieregg, J., Bryant, J., Elena, B., Kreischer, K.E., Temkin, R.J., Griffin, R.G.: J. Magn. Reson. 160, 85–90 (2003)CrossRefADSGoogle Scholar
  47. Hu, K.-N., Yu, H.-H., Swager, T.M., Griffin, R.G.: J. Am. Chem. Soc. 126, 10844–10845 (2004)CrossRefGoogle Scholar
  48. Abragam, A., Goldman, M.: Nuclear Magnetism: Order and Disorder. Clarendon, Oxford (1982)Google Scholar
  49. Goldman, M.: Spin Temperature and Nuclear Magnetic Resonance in Solids. Oxford University Press, London (1970)Google Scholar
  50. Henstra, A., Dirksen, P., Wenckebach, W.T.: Phys. Lett. A 134, 134 (1988)CrossRefADSGoogle Scholar
  51. Hu, K.-N., Song, C., Yu, H.-H., Swager, T.M., Griffin, R.G.: J. Chem. Phys. 128, 052302 (2008)CrossRefADSGoogle Scholar
  52. Hu, K.-N., Bajaj, V.S., Rosay, M.M., Griffin, R.G.: J. Chem. Phys. 126, 044512 (2007)CrossRefADSGoogle Scholar
  53. Bennett, A.E., Rienstra, C.M., Auger, M., Lakshmi, K.V., Griffin, R.G.: J. Chem. Phys. 103, 6951 (1995)CrossRefADSGoogle Scholar
  54. Carver, T.R., Slichter, C.P.: Phys. Rev. 92, 212–213 (1953)CrossRefADSGoogle Scholar
  55. Joo, C.-G., Hu, K.-N., Bryant, J.A., Griffin, R.G.: J. Am. Chem. Soc. 128, 9428–9432 (2006)CrossRefGoogle Scholar
  56. Ardenkjaer-Larsen, J.H., Fridlund, B., Gram, A., Hansson, G., Hansson, L., Lerche, M.H., Servin, R., Thaning, M., Golman, K.: Proc. Natl. Acad. Sci. USA 100, 10158–10163 (2003)CrossRefADSGoogle Scholar
  57. Frydman, L., Scherf, T., Lupulescu, A.: Proc. Natl. Acad. Sci. USA 99, 15858–15862 (2002)CrossRefADSGoogle Scholar
  58. Weis, V., Bennati, M., Rosay, M., Griffin, R.G.: J. Chem. Phys. 113, 6795–6802 (2000)CrossRefADSGoogle Scholar
  59. Weis, V., Griffin, R.G.: Solid State Nucl. Magn. Reson. 29, 105–117 (2006)CrossRefGoogle Scholar
  60. Pines, A., Gibby, M.G., Waugh, J.S.: J. Chem. Phys. 56, 1776 (1972)CrossRefADSGoogle Scholar
  61. Hartmann, S.R., Hahn, E.L.: Phys. Rev. 128, 2042–2053 (1962)MATHCrossRefADSGoogle Scholar
  62. Bloembergen, N., Sorokin, P.P.: Phys. Rev. 110, 865–875 (1958)CrossRefADSGoogle Scholar
  63. Wind, R.A., Lock, H.: Adv. Magn. Opt. Reson. 15, 51–77 (1990)Google Scholar
  64. Farrar, C.T., Hall, D.A., Gerfen, G.J., Rosay, M., Ardenkjaer-Larsen, J.H., Griffin, R.G.: J. Magn. Reson. 144, 134–141 (2000)CrossRefADSGoogle Scholar
  65. Jeschke, G.: Chem. Phys. Lett. 301, 524–530 (1999)CrossRefADSGoogle Scholar
  66. Jeschke, G., Schweiger, A.: Mol. Phys. 88, 355–383 (1996)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • A. B. Barnes
    • 1
  • G. De Paëpe
    • 1
    • 2
  • P. C. A. van der Wel
    • 1
    • 2
  • K.-N. Hu
    • 1
    • 2
  • C.-G. Joo
    • 1
    • 2
  • V. S. Bajaj
    • 1
    • 2
  • M. L. Mak-Jurkauskas
    • 3
  • J. R. Sirigiri
    • 4
  • J. Herzfeld
    • 3
  • R. J. Temkin
    • 4
  • R. G. Griffin
    • 1
    • 2
  1. 1.Francis Bitter Magnet Laboratory, Massachusetts Institute of TechnologyCambridgeUSA
  2. 2.Department of ChemistryMassachusetts Institute of TechnologyCambridgeUSA
  3. 3.Department of ChemistryBrandeis UniversityWalthamUSA
  4. 4.Plasma Science and Fusion CenterMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations