Advertisement

Applied Magnetic Resonance

, 34:399 | Cite as

First DNP Results from a Liquid Water-TEMPOL Sample at 400 MHz and 260 GHz

  • M. J. Prandolini
  • V. P. Denysenkov
  • M. Gafurov
  • S. Lyubenova
  • B. Endeward
  • M. Bennati
  • T. F. Prisner
Open Access
Article

Abstract.

Using a newly designed liquid-state dynamic nuclear polarization (DNP) spectrometer operating at a magnetic field of 9.2 T, a DNP enhancement of −4.0(1) was achieved for protons in a liquid water-TEMPOL sample. The DNP mechanism was observed to be the Overhauser effect, where the polarization was transfered via electron–proton dipolar relaxation. At full microwave power, the sample was heated by 17 K above room temperature, causing a significant increase in the DNP enhancement. These first results from the Frankfurt liquid-state DNP spectrometer represent a significant step towards the application of DNP to large biomolecules in the liquid state.

Keywords

Electron Paramagnetic Resonance Electron Paramagnetic Resonance Spectrum High Magnetic Field Dynamic Nuclear Polarization Nuclear Magnetic Resonance Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Overhauser, A.W.: Phys. Rev. 92, 411 (1953)zbMATHCrossRefADSGoogle Scholar
  2. Wind, R.A., Duijvestijn, M.J., van der Lugt, C., Manenschijn, A., Vriend, J.: Prog. Nucl. Magn. Reson. Spectrosc. 17, 33 (1985)CrossRefGoogle Scholar
  3. Atsarkin, V.A.: Sov. Phys. Usp. 21, 725 (1978)CrossRefADSGoogle Scholar
  4. Hausser, K.H.: Z. Phys. 183, 265 (1965)CrossRefADSGoogle Scholar
  5. Jackson, J.D.: Classical Electrodynamics, 3rd edn. Wiley, New York (1999)zbMATHGoogle Scholar
  6. Denysenkov, V.P., Prandolini, M.J., Krahn, A., Gafurov, M., Endeward, B., Prisner, T.F.: Appl. Magn. Reson. 34, 289–299 (2008)CrossRefGoogle Scholar
  7. Hausser, K.H., Stehlik, D.: Adv. Magn. Reson. 3, 79 (1968)Google Scholar
  8. Müller-Warmuth, W., Meise-Gresch, K.: Adv. Magn. Reson. 11, 1 (1983)Google Scholar
  9. Hall, D.A., Maus, D.C., Gerfen, G.J., Inati, S.J., Becerra, L.R., Dahlquist, F.W., Griffin, R.G.: Science 276, 930 (1997)CrossRefGoogle Scholar
  10. Hu, K.-N., Yu, H.-H., Swager, T.M., Griffin, R.G.J.: Am. Chem. Soc. 126, 10844 (2004)CrossRefGoogle Scholar
  11. Bajaj, V.S., Hornstein, M.K., Kreischer, K.E., Sirigiri, J.R., Woskov, P.P., Mak-Jurkauskas, M.L., Herzfeld, J., Temkin, R.J., Griffin, R.G.: J. Magn. Reson. 189, 251 (2007)CrossRefADSGoogle Scholar
  12. Loening, N.M., Rosay, M., Weis, V., Griffin, R.G.: J. Am. Chem. Soc. 124, 8808 (2002)CrossRefGoogle Scholar
  13. Wu, T., Kendell, K.R., Felmlee, J.P., Lewis, B.D., Ehman, R.L.: Med. Phys. 27, 221 (2000)CrossRefGoogle Scholar
  14. Wind, R.A., Ardenkjaer-Larsen, J.-H.: J. Magn. Reson. 141, 347 (1999)CrossRefADSGoogle Scholar
  15. Armstrong, B.D., Han, S.: J. Chem. Phys. 127, 104508 (2007)CrossRefADSGoogle Scholar
  16. Höfer, P., Parigi, G., Luchinat, C., Carl, P., Guthausen, G., Reese, M., Carlomagno, T., Griesinger, C., Bennati, M.: J. Am. Chem. Soc. 130, 3254–3255 (2008)CrossRefGoogle Scholar
  17. Borah, B., Bryant, R.G.: J. Chem. Phys. 75, 3297 (1981)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • M. J. Prandolini
    • 1
  • V. P. Denysenkov
    • 1
  • M. Gafurov
    • 1
  • S. Lyubenova
    • 1
  • B. Endeward
    • 1
  • M. Bennati
    • 1
    • 2
  • T. F. Prisner
    • 1
  1. 1.Institute of Physical and Theoretical Chemistry, Center for Biomolecular Magnetic ResonanceJ. W. Goethe University FrankfurtFrankfurt am MainGermany
  2. 2.Max Planck Institute for Biophysical ChemistryGöttingenGermany

Personalised recommendations