Applied Magnetic Resonance

, Volume 34, Issue 3–4, pp 495–508 | Cite as

Monitoring the Solid-State Polarization of 13C, 15N, 2H, 29Si and 31P

  • S. Reynolds
  • H. Patel


In the frozen state, dynamic nuclear polarization (DNP) can enhance the nuclear magnetic resonance (NMR) signal by different mechanisms, broadly described as solid effect or thermal mixing. The dominant mechanism has been previously investigated by monitoring the level of polarization at discrete frequencies across the line width of the electron paramagnetic resonance: a microwave sweep. Results suggest that for DNP using trityl radical at 1.4 K and 3.35 T, thermal mixing dominates the polarization for 13C and 15N. A high-sensitivity probe that can be inserted into a Hyper-Sense DNP polarizer has been designed to observe the solid-state NMR signal over the X-band range of nuclei as they are polarizing. We examine the optimum polarization frequencies for 13C, 2H, 29Si, 15N and 31P by means of microwave sweeps and from these infer the polarization mechanism of particular nuclei for the conditions of polarization. We also determine the polarization buildup time constant for some typical compounds in order to provide some indicative polarization times that can be used before the sample is transferred to the liquid state.


Dynamic Nuclear Polarization Nuclear Magnetic Resonance Signal Larmor Frequency Asymptotic Standard Error Sweep Range 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ardenkjaer-Larsen, J.H., Fridlund, B., Gram, A., Hansson, G., Hansson, L., Lerche, M.H., Servin, R., Thaning, M., Golman, K.: Proc. Natl. Acad. Sci. USA 100, 10158–10163 (2003)CrossRefADSGoogle Scholar
  2. Abragam, A.: Principles of Nuclear Magnetism. Clarendon, Oxford (1983)Google Scholar
  3. Wind, R.A., Duijvestijn, M.J., van der Lugt, C., Manenschijn, A., Vriend, J.: Prog. Nucl. Magn. Reson. Spectrosc. 17, 33–67 (1985)CrossRefGoogle Scholar
  4. de Boer, W.: J. Low Temp. Phys. 22, 185–212 (1976)CrossRefADSGoogle Scholar
  5. Atsarkin, V.A.: Sov. Phys. Usp. 21, 725–743 (1978)CrossRefGoogle Scholar
  6. Slade, R., Hutton, G., Blazina, D.: Characterising Solid-State DNP. Application Note. Oxford Instruments Molecular Biotools, Tubney Woods, UK (2006)
  7. Blazina, D., Reynolds, S., Slade, R.: Influence of Trityl Radical on the DNP Process. Application Note. Oxford Instruments Molecular Biotools, Tubney Woods, UK (2006)
  8. Gabellieri, C., Reynolds, S., Lavie, A., Payne, G.S., Leach, M.O., Eykyn, T.R.: J. Am. Chem. Soc. 130, 4598–4599 (2008)CrossRefGoogle Scholar
  9. Wolber, J., Ellner, F., Fridlund, B., Gram, A., Johannesson, H., Hansson, G., Hansson, L.H., Lerche, M.H., Mansson, S., Servin, R., Thaning, M., Golman, K., Ardenkjaer-Larsen, J.H.: Nucl. Instrum. Methods Phys. Res. A 526, 173–181 (2004)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • S. Reynolds
    • 1
  • H. Patel
    • 1
  1. 1.Oxford Instruments Molecular BiotoolsTubney WoodsUK

Personalised recommendations