Advertisement

Applied Magnetic Resonance

, Volume 34, Issue 3–4, pp 461–473 | Cite as

Recent Progress in the Dynamic Nuclear Polarization of Solid Deuterated Butanol Targets

  • J. Heckmann
  • C. Hess
  • W. Meyer
  • E. Radtke
  • G. Reicherz
  • M. Schiemann
Article

Abstract.

Polarized solid targets have been used in nuclear and particle physics experiments since the early 1960s, and with the development of superconducting magnets and 3He/4He dilution refrigerators in the early 1970s, proton polarization values of 80–100% have been achieved routinely in various target materials at two standard magnetic field and temperature conditions (2.5 T, <0.3 K and 5 T, 1 K). Due to the much lower magnetic moment of the deuteron compared with that of the proton, deuteron polarization values have been considerably lower, typically 30–40% in chemically doped alcohols (d-butanol), 40–45% in radiation-doped ammonia (ND3), and 50–55% in irradiated lithium-deuteride. Now, however, research at the University of Bochum – including systematical electron spin resonance (ESR) investigations in order to study the properties of the paramagnetic dopants (i.e., their ESR line width) – is yielding alcohol and diol materials with deuteron polarizations as high as 80%.

Keywords

Electron Spin Resonance Dynamic Nuclear Polarization Electron Spin Resonance Line Nitroxide Radical Spin Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abragam, A.: Principles of Nuclear Magnetism. Oxford University Press, Oxford (1961)Google Scholar
  2. Goldman, M.: Spin Temperature and Nuclear Magnetic Resonance in Solids. Oxford University Press, Oxford (1970)Google Scholar
  3. Borghini, M., in: Shapiro, G. (ed.) Proceedings of the 2nd International Conference on Polarized Targets, Berkeley, USA, 1971, p. 1. National Technical Information Service, Springfield, Virginia (1972)Google Scholar
  4. Abragam, A., Goldman, M.: Rep. Prog. Phys. 41, 395 (1978)CrossRefADSGoogle Scholar
  5. Goertz, S., Meyer, W., Reicherz, G.: Prog. Part. Nucl. Phys. 49, 403–489 (2002)CrossRefADSGoogle Scholar
  6. Borghini, M.: Phys. Rev. Lett. 20, 419 (1968)CrossRefADSGoogle Scholar
  7. Trentalange, S., Baum, G., Bunyatova, E., van den Brandt, B., Hautle, P., Ent, R., Konter, J.A., Mango, S., Niinikoski, T., Rijllart, A., Takala, S., Wessler, M., in: Meyer, W., Steffens, E., Thiel, W. (eds.) High Energy Spin Physics: Proceedings of the 9th International Symposium, Held at Bonn, 10–15 September 1990, vol. 2, p. 325. Springer, Berlin (1991)Google Scholar
  8. Harmsen, J.: PhD thesis, Ruhr University Bochum, Bochum, Germany (2002)Google Scholar
  9. Goertz, S.: Habilitation thesis, Ruhr University Bochum, Bochum, Germany (2002)Google Scholar
  10. Heckmann, J.: PhD thesis, Ruhr University Bochum, Germany, Bochum (2004)Google Scholar
  11. Heckmann, J., Goertz, S., Meyer, W., Radtke, E., Reicherz, G.: Nucl. Instrum. Methods Phys. Res. A 526, 110–116 (2004)CrossRefADSGoogle Scholar
  12. Heckmann, J., Goertz, S., Meyer, W., Radtke, E., Reicherz, G.: Phys. Rev. B 74, 134418 (2006)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • J. Heckmann
    • 1
  • C. Hess
    • 1
  • W. Meyer
    • 1
  • E. Radtke
    • 1
  • G. Reicherz
    • 1
  • M. Schiemann
    • 1
  1. 1.Institute for Experimental Physics AG IRuhr University BochumBochumGermany

Personalised recommendations