Acid-Induced Gelation of Low-Methoxyl Pectins Studied by 1H NMR and Rheological Methods

  • M. Dobies
  • M. Kempka
  • S. Kuśmia
  • S. Jurga
Article

Abstract.

Various 1H nuclear magnetic resonance (NMR) techniques (1H NMR dispersion [NMRD], water proton spin–spin relaxation time and diffusion measurements) in combination with rheological measurements were applied to the analysis of the acid-induced gelation of 3% (w/w) aqueous low-methoxyl (LM) pectin solutions at 279 K. A decrease of the pH value of solutions from 5 to 2.6 leads to a slowdown in the dynamics of water molecules and to a substantial modification in the structure of the system studied. The most significant changes in the 1H NMRD and T 2 measurements were observed when pH was varied from 5 to 3, which reflected an increase in the stiffness of the pectin chains caused by nonionic associations and by an increase of water molecules that were trapped between the pectin chains in the gelled state. The results obtained by the rheological method are consistent with those of 1H NMR, indicating a solution-like mechanical response for the sample at pH 5 and a gel-like response at pH 3. Results of 1H NMR measurements have also shown an important role of aggregation processes of LM pectin molecules in the acid-induced gel network formation.

References

  1. Axelos, M.A.V., Thibault, J.-F., in: Walter, R.H. (ed.) The Chemistry and Technology of Pectin, pp. 109–118. Academic Press, New York (1991)Google Scholar
  2. Kjøniksen, A.-L., Hiorth, M., Nyström, B.: Eur. Polym. J. 41, 761–770 (2005)CrossRefGoogle Scholar
  3. Garnier, C., Axelos, M.A.V., Thibault, J.-F.: Carbohydr. Res. 240, 219–232 (1993)CrossRefGoogle Scholar
  4. Grant, G.T., Morris, E.R., Rees, D.A., Smith, P.J.C., Thom, D.: FEBS Lett. 32, 195–198 (1973)CrossRefGoogle Scholar
  5. Braccini, I., Perez, S.: Biomacromolecules 2, 1089–1096 (2001)CrossRefGoogle Scholar
  6. Gilsenan, P.M., Richardson, R.K., Morris, E.R.: Carbohydr. Polym. 41, 339–349 (2000)CrossRefGoogle Scholar
  7. Axelos, M.A.V., Kolb, M.: Phys. Rev. Lett. 64, 1457–1460 (1990)CrossRefADSGoogle Scholar
  8. Durand, D., Bertrand, C., Clark, A.H., Lips, A.: Int. J. Biol. Macromol. 12, 14–18 (1990)CrossRefGoogle Scholar
  9. Lopes da Silva, J.A., Goncalves, M.P., Doublier, J.L., Axelos, M.A.V.: Polym. Gels Networks 4, 65–83 (1996)CrossRefGoogle Scholar
  10. Cardoso, S.M., Coimbra, M.A., Lopes da Silva, J.A.: Food Hydrocolloids 17, 801–807 (2003)CrossRefGoogle Scholar
  11. Marudova, M., Jilov, N.: J. Food Eng. 59, 177–180 (2003)CrossRefGoogle Scholar
  12. Jarvis, M.C., Apperley, D.C.: Carbohydr. Res. 275, 131–145 (1995)CrossRefGoogle Scholar
  13. Kerr, W.L., Wicker, L.: Carbohydr. Polym. 42, 133–141 (2000)CrossRefGoogle Scholar
  14. Grosso, C.R.F., Bobbio, P.A., Airoldi, C.: Carbohydr. Polym. 41, 421–424 (2000)CrossRefGoogle Scholar
  15. Rosenbohm, C., Lundt, I., Christensen, T.M.I.E., Young, N.W.G.: Carbohydr. Res. 338, 637–649 (2003)CrossRefGoogle Scholar
  16. Dobies, M., Kozak, M., Jurga, S.: Solid State Nucl. Magn. Reson. 25, 188–193 (2004)CrossRefGoogle Scholar
  17. Dobies, M., Kuśmia, M., Jurga, S.: Acta Phys. Pol. 108, 33–46 (2005)ADSGoogle Scholar
  18. Narayanan, J., Deotare, V.W., Bandyopadhyay, R., Sood, A.K.: J. Colloid Interface Sci. 245, 267–273 (2002)CrossRefGoogle Scholar
  19. Löfgren, C., Walkenström, P., Hermansson, A.M.: Biomacromolecules 3, 1144–1153 (2002)CrossRefGoogle Scholar
  20. Hills, B.P., Wright, K.M., Belton, P.S.: Mol. Phys. 67, 919–937 (1989)CrossRefADSGoogle Scholar
  21. Hills, B.P., Takacs, S.F., Belton, P.S.: Food Chem. 37, 95–111 (1990)CrossRefGoogle Scholar
  22. Berti, F., Costantino, P., Fragai, M., Luchinat, C.: Biophys. J. 85, 3–9 (2004)CrossRefGoogle Scholar
  23. Ohtsuka, A., Watanabe, T.: Carbohydr. Polym. 30, 135–140 (1996)CrossRefGoogle Scholar
  24. Rondeau-Mouro, C., Zykwinska, A., Durand, S., Doublier, J.-L., Buléon, A.: Carbohydr. Polym. 57, 459–468 (2004)CrossRefGoogle Scholar
  25. Conti, S.: Mol. Phys. 59, 483–505 (1986)CrossRefADSGoogle Scholar
  26. Hills, B.P., Wright, K.M., Belton, P.S.: Mol. Phys. 67, 193–208 (1989)CrossRefADSGoogle Scholar
  27. Hills, B.P.: Mol. Phys. 76, 489–508 (1992)CrossRefADSGoogle Scholar
  28. Hills, B.P.: Mol. Phys. 76, 509–523 (1992)CrossRefADSGoogle Scholar
  29. Hills, B.P., Cano, C., Belton, P.S.: Macromolecules 24, 2944–2950 (1991)CrossRefADSGoogle Scholar
  30. Pavesi, L., Balzarini, M.: Magn. Reson. Imaging 14, 985–987 (1996)CrossRefGoogle Scholar
  31. Blicharska, B., Rydzy, M.: Acta Phys. Pol. A 56, 439–443 (1979)Google Scholar
  32. Kimmich, R., Anoardo, E.: Prog. Nucl. Magn. Reson. Spectrosc. 44, 257–320 (2004)CrossRefGoogle Scholar
  33. Abragam, A.: The Principles of Nuclear Magnetism, pp. 264–353. Clarendon, Oxford (1994)Google Scholar
  34. Bodurka, J., Seitter, R.-O., Kimmich, R., Gutsze, A.: J. Chem. Phys. 107, 5621–5624 (1997)CrossRefADSGoogle Scholar
  35. Bertini, I., Fragai, M., Luchinat, C., Parigi, G.: Magn. Reson. Chem. 38, 543–550 (2000)CrossRefGoogle Scholar
  36. Lopiano, L., Fasano, M., Giraudo, S., Digilio, G., Koenig, S.H., Torre, E., Bergamasco, B., Aime, S.: Neourochem. Int. 37, 331–336 (2000)CrossRefGoogle Scholar
  37. Venu, K., Denisov, V.P., Halle, B.: J. Am. Chem. Soc. 119, 3122–3134 (1997)CrossRefGoogle Scholar
  38. Halle, B., Johannesson, H., Venu, K.: J. Magn. Reson. 135, 1–13 (1998)CrossRefADSGoogle Scholar
  39. Stejskal, E.O., Tanner, J.E.: J. Chem. Phys. 42, 288–292 (1965)CrossRefADSGoogle Scholar
  40. Matsukawa, S., Yasunaga, H., Zhao, C., Kuroki, S., Kurosu, H., Ando, I.: Prog. Polym. Sci. 24, 995–1044 (1999)CrossRefGoogle Scholar
  41. Kavanagh, G.M., Ross-Murphy, S.B.: Prog. Polym. Sci. 23, 533–562 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • M. Dobies
    • 1
  • M. Kempka
    • 1
  • S. Kuśmia
    • 1
  • S. Jurga
    • 1
  1. 1.Department of Macromolecular Physics, Faculty of PhysicsAdam Mickiewicz UniversityPoznańPoland

Personalised recommendations