Applied Magnetic Resonance

, Volume 34, Issue 1–2, pp 193–203 | Cite as

Molecular Motion in the Biocopolymer Sequence of Glycolide and Lactide Studied by Solid-State NMR

  • F. Nozirov
  • Z. Fojud
  • M. Jancelewicz
  • A. Nazirov
  • S. Jurga
Article
  • 43 Downloads

Abstract.

This paper reports a nuclear magnetic resonance study of the molecular motion in copolymers derived from glycolide and L-lactide in the solid state. Variation of T 1 relaxation times with temperature reflects a local disorder and the fast segment conformational motions which can be quantified in terms of correlation times predicted by the Bloembergen–Purcell–Pound and Davidson–Cole models. At low temperatures, spin relaxation is dominated by the axial methyl rotation in lactide units described by an asymmetry parameter of the correlation time δ which takes a value of about 0.45 for all systems. Above the devitrification points the trans and gauche isomerization in glycolide segments occurs. In addition to the chemical structure characterization, solid-state magic-angle spinning spectroscopy gives an insight into the role of glycol segments in the chain mobility.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vert, M., Schwarch, G., Coudane, J.: J. Macromol. Sci. Pure Appl. Chem. A 32, 787 (1995)CrossRefGoogle Scholar
  2. Cai, Q., Bei, J.Z., Luo, A.Q., Wang, S.G.: Polym. Degrad. Stab. 71, 243 (2001)CrossRefGoogle Scholar
  3. Illum, L., Davis, S.S., in: Wright, J. (ed.) Polymers in Controlled Drug Delivery. Academic Press, Bristol (1987)Google Scholar
  4. Bero, M., Dobrzynski, P., Kasperczyk, J.: Polym. Bull. 42, 131 (1999)CrossRefGoogle Scholar
  5. Abragam, A.: The Principles of Nuclear Magnetism. Clarendon, Oxford (1983)Google Scholar
  6. van Vleck, J.H.: Phys. Rev. 74, 1168 (1948)MATHCrossRefADSGoogle Scholar
  7. Smith, G.W.: J. Chem. Phys. 43, 4325 (1965)CrossRefADSGoogle Scholar
  8. Smith, G.W.: J. Chem. Phys. 51, 3569 (1969)CrossRefADSGoogle Scholar
  9. Smith, G.W.: J. Chem. Phys. 42, 4229 (1965)CrossRefADSGoogle Scholar
  10. Andrew, E.R.: Nuclear Magnetic Resonance. Cambridge University Press, Cambridge (1969)Google Scholar
  11. Beckmann, P.A.: Phys. Rep. 171, 86 (1988)CrossRefADSGoogle Scholar
  12. Davidson, D.W., Cole, R.H.: J. Chem. Phys. 18, 1417 (1950)CrossRefADSGoogle Scholar
  13. Davidson, D.W., Cole, R.H.: J. Chem. Phys. 19, 1484 (1951)CrossRefADSGoogle Scholar
  14. Bloembergen, N., Purcell, E.M., Pound, R.V.: Phys. Rev. 73, 679 (1948)CrossRefADSGoogle Scholar
  15. Fischer, E., Kimmich, R., Fatkullin, N.: J. Chem. Phys. 106, 9883 (1997)CrossRefADSGoogle Scholar
  16. Doi, M., Edwards, S.F.: The Theory of Polymer Dynamics. Clarendon, Oxford (1986)Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • F. Nozirov
    • 1
  • Z. Fojud
    • 1
  • M. Jancelewicz
    • 1
  • A. Nazirov
    • 1
  • S. Jurga
    • 1
  1. 1.Department of Macromolecular Physics, Faculty of PhysicsAdam Mickiewicz UniversityPoznańPoland

Personalised recommendations