Advertisement

Applied Magnetic Resonance

, Volume 33, Issue 4, pp 447–456 | Cite as

First-Principles Calculation of Electric Field Gradients in Metals, Semiconductors, and Insulators

  • J. W. Zwanziger
  • M. Torrent
Article

Abstract.

A scheme for computing electric field gradients within the projector augmented wave (PAW) formalism of density functional theory is presented. On the basis of earlier work (M. Profeta, F. Mauri, C.J. Pickard, J. Am. Chem. Soc. 125, 541, 2003) the present implementation handles metallic cases as well as insulators and semiconductors with equal efficiency. Details of the implementation, as well as applications and the discussion of the limitations of the PAW method for computing electric field gradients are presented.

Keywords

Density Functional Theory Calculation Electric Field Gradient Nuclear Quadrupole Resonance Projector Augmented Wave Electric Field Gradient Tensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sternheimer, R.: Phys. Rev. 80, 102–103 (1950)CrossRefADSGoogle Scholar
  2. Lucken, E.A.C.: Nuclear Quadrupole Coupling Constants. Academic Press, London (1969)Google Scholar
  3. Blöchl, P.E.: Phys. Rev. B 50, 17953 (1994) CrossRefADSGoogle Scholar
  4. Petrilli, H.M., Blöchl, P.E., Blaha, P., Schwarz, K.: Phys. Rev. B 57, 14690–14697 (1998)CrossRefADSGoogle Scholar
  5. Profeta, M., Mauri, F., Pickard, C.J.: J. Am. Chem. Soc. 125, 541 (2003) CrossRefGoogle Scholar
  6. Kresse, G., Joubert, D.: Phys. Rev. B 59, 1758–1775 (1999)CrossRefADSGoogle Scholar
  7. Honma, A.: J. Phys. Soc. Jpn. 42, 1129–1135 (1977)CrossRefADSGoogle Scholar
  8. Gonze, X., Beuken, J.-M., Caracas, R., Detraux, F., Fuchs, M., Rignanese, G.-M., Sindic, L., Verstraete, M., Zérah, G., Jollet, F., Torrent, M., Roy, A., Mikami, M., Ghosez, P., Raty, J.-Y., Allan, D.: Comput. Mater. Sci. 25, 478–492 (2002)CrossRefGoogle Scholar
  9. Gonze, X., Rignanese, G., Verstraete, M., Beuken, J., Pouillon, Y., Caracas, R., Jollet, F., Torrent, M., Zérah, G., Mikami, M., Ghosez, P., Veithen, M., Raty, J., Olevano, V., Bruneval, F., Reining, L., Godby, R., Onida, G., Hamann, D.R., Allan, D.C.: Z. Kristallogr. 220, 558–562 (2005)CrossRefGoogle Scholar
  10. Torrent, M., Jollet, F., Bottin, F., Zérah, G., Gonze, X.: Comput. Mater. Sci. 42, 337–351 (2008)CrossRefGoogle Scholar
  11. Vanderbilt, D.: Phys. Rev. B 41, 7892 (1990)CrossRefADSGoogle Scholar
  12. Perdew, J.P., Burke, K., Ernzerhof, M.: Phys. Rev. Lett. 77, 3865–3868 (1996)CrossRefADSGoogle Scholar
  13. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, J.A. Jr., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Cliord, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., Pople, J.A.: Gaussian 03, Revision C.02. Gaussian Inc., Wallingford (2004)Google Scholar
  14. Sadlej, A.J.: Collect. Czech. Chem. Commun. 53, 1995–2016 (1988)CrossRefGoogle Scholar
  15. Sadlej, A.J.: Theor. Chim. Acta 79, 123–140 (1991)CrossRefGoogle Scholar
  16. Sadlej, A.J.: Theor. Chim. Acta 81, 45–63 (1991)CrossRefGoogle Scholar
  17. Sadlej, A.J.: Theor. Chim. Acta 81, 339–354 (1992)CrossRefGoogle Scholar
  18. Ebert, H., Abart, J., Voitländer, J.: J. Phys. F: Met. Phys. 16, 1287–1297 (1986)CrossRefADSGoogle Scholar
  19. Potzel, W., Obenhuber, T., Forster, A., Kalvius, G.M.: Hyperfine Interact. 12, 135–141 (1982)CrossRefADSGoogle Scholar
  20. Barnes, R.G., Segel, S.L., Jones, W.H. Jr.: J. Appl. Phys. 33, 296–302 (1962)CrossRefADSGoogle Scholar
  21. Prasad, S., Zhao, P., Huang, J., Fitzgerald, J.J., Shore, J.S.: Solid State Nucl. Magn. Reson. 19, 45–62 (2001)CrossRefGoogle Scholar
  22. Xue, X., Stebbins, J.F., Kanzaki, M.: Am. Mineral. 79, 31–42 (1994)Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • J. W. Zwanziger
    • 1
    • 2
  • M. Torrent
    • 3
  1. 1.Department of ChemistryDalhousie UniversityHalifaxCanada
  2. 2.Institute for Research in MaterialsDalhousie UniversityHalifaxCanada
  3. 3.Département de Physique Théorique et AppliquéeCommissariat à l'Énergie AtomiqueBruyères-le-ChâtelFrance

Personalised recommendations