Advertisement

Influence of optic media of the human eye on the imaging of Argus® II retinal prosthesis with intraoperative spectral-domain optical coherence tomography

Einfluss der optischen Medien des menschlichen Auges auf die Bildgebung einer Argus®-II-Retinaprothese mit intraoperativer Spectral-Domain optischer Kohärenztomografie

  • 41 Accesses

Summary

Background

This study aimed to evaluate the influence of the optic media of the human eye on intraoperative spectral-domain optical coherence tomography (iSD-OCT) of an Argus® II retinal prosthesis (AIIRP) during its implantation.

Methods

One AIIRP was implanted in a human eye with end-stage retinitis pigmentosa and another one in a test eye. Intraoperative imaging was performed using the Rescan™ 700, a microscope-integrated iSD-OCT system. The feasibility of iSD-OCT imaging for AIIRP implantation was assessed during different surgical steps. Data were post-processed postoperatively using the ImageJ graphic software.

Results

The quality of imaging of the AIIRP during its implantation was good and almost the same in the human eye and in the training eye. The histograms showed that the optic media had no impact on the quality of iSD-OCT scans, as the difference between the pixel values was not statistically significant. Additionally, the quality of iSD-OCT imaging of the retina under the AIIRP array was not decreased by the array itself.

Conclusion

The iSD-OCT-assisted surgical approach facilitates imaging of the AIIRP during its implantation. Uncompromised human optic media do not reduce the quality of AIIRP array imaging throughout all the surgical steps. The influence of the opaque cornea in long-lasting surgeries on the iSD-OCT scan quality during AIIRP implantation has to be investigated.

Zusammenfassung

Hintergrund

Ziel der vorliegenden Studie war es, den Einfluss der optischen Medien des menschlichen Auges auf die Bildgebung einer Argus®-II-Retinaprothese (AIIRP) mittels intraoperativer optischer Kohärenztomographie in Spectral-Domain-Technik („intraoperative spectral-domain optical coherence tomography“ [iSD-OCT]) während der Implantation zu untersuchen.

Methoden

Eine AIIRP wurde in ein menschliches Auge mit Retinitis pigmentosa im Endstadium implantiert und eine in ein Testauge. Die intraoperative bildgebende Untersuchung erfolgte mit Rescan™ 700, einem in das Mikroskop integrierten iSD-OCT-System. Die Praxistauglichkeit der iSD-OCT-Bildgebung bei einer AIIRP-Implantation wurde während der verschiedenen Op.-Schritte ermittelt. Postoperativ wurden die Daten mit der Grafiksoftware ImageJ nachbearbeitet.

Ergebnisse

Die Qualität der Bildgebung der AIIRP während der Implantation war gut und dabei in dem menschlichen Auge und in dem Trainingsauge fast gleich. Die Histogramme zeigen, dass die optischen Medien keinen Einfluss auf die Qualität der iSD-OCT-Aufnahmen hatten, da der Unterschied zwischen den Pixelwerten nicht statistisch signifikant war. Darüber hinaus war die Qualität der iSD-OCT-Bildgebung der Retina unter dem AIIRP-Array nicht durch das Array an sich reduziert.

Schlussfolgerung

Der iSD-OCT-unterstützte chirurgische Ansatz erleichtert die bildgebende Untersuchung der AIIRP während der Implantation. Unbeeinträchtigte menschliche optische Medien reduzieren die Qualität der Bildgebung des AIIRP-Arrays während sämtlicher Op.-Schritte nicht. Der Einfluss der trüben Kornea während langdauernder Operationen auf die Qualität der iSD-OCT-Aufnahmen bei einer AIIRP-Implantation muss noch untersucht werden.

This is a preview of subscription content, log in to check access.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Hamel C. Retinitis pigmentosa. Orphanet J Rare Dis. 2006;1:40.

  2. 2.

    Binder S, Lytvynchuk LM. Argus II Retina Implantat bei an Retinopathia pigmentosa erblindeter Patientin. Spektrum Augenheilkd. 2016;30:100–5.

  3. 3.

    Luo Y, da Cruz L. The Argus(®) II Retinal Prosthesis System. Prog Retin Eye Res. 2016;50:89–107.

  4. 4.

    Rizzo S, Belting C, Cinelli L, Allegrini L, Genovese-Ebert F, Barca F, di Bartolo E. The Arguss II Retinal Prosthesis: 12-month outcome from a single-study centre. Am J Ophthalmol. 2014;157(6):1282–90.

  5. 5.

    Ghodasra DH, Chen A, Arevalo JF, Birch DG, Branham K, Coley B, Dagnelie G, de Juan E, Devenyi RG, Dorn JD, Fisher A. Worldwide Argus II implantation: recommendations to optimize patient outcomes. BMC Ophthalmol. 2016;16(1):1.

  6. 6.

    Delyfer M, Gaucher D, Govare M, Cougnard-Grégoire A, Korobelnik J, Ajana S, Mohand-Saïd S, Ayello-Scheer S, Rezaiguia-Studer F, Dollfus H, Sahel J, Barale P. Adapted surgical procedure for argus II retinal implantation: feasibility, safety, efficiency, and postoperative anatomic findings. Ophthalmol Retin. 2018;2:276–87.

  7. 7.

    Weiland JD, Cho AK, Humayun MS. Retinal prostheses: current clinical results and future needs. Ophthalmology. 2011;118(11):2227–37.

  8. 8.

    Israelsen PE, Sadda SR, Dorn JD, Humayun MS, Olmos de Koo LC. Optomap widefield imaging of the argus ii retinal prosthesis in patients with retinitis pigmentosa. Retin Cases Brief Rep. 2016;10(4):382–5.

  9. 9.

    Parmeggiani F, De Nadai K, Piovan A, Binotto A, Zamengo S, Chizzolini M. Optical coherence tomography imaging in the management of the Argus II retinal prosthesis system. Eur J Ophthalmol. 2017;27(1):e16–e21. https://doi.org/10.5301/ejo.5000852.

  10. 10.

    Argus®II Retinal Prosthesis System Surgeon Manual. Second Sight Medical Products, Inc. https://www.accessdata.fda.gov/cdrh_docs/pdf11/h110002c.pdf. Accessed 9 Sept 2018

  11. 11.

    Luo YH, Davagnanam I, da Cruz L. MRI brain scan in two patients with the Argus II retinal prothesis. Ophthalmology. 2013;120(8):1711–1711.

  12. 12.

    Weiland JD, Faraji B, Greenberg RJ, Humayun MS, Shellock FG. Assessment of MRI issues for the Argus II retinal prosthesis. Magn Reson Imaging. 2012;30(3):382–9.

  13. 13.

    Tamaki M, Matsuo T. Optical coherence tomographic parameters as objective signs for visual acuity in patients with retinitis pigmentosa, future candidates for retinal prosthesis. Artif Organs. 2011;14(2):140–50.

  14. 14.

    Binder S, Falkner-Radler CI, Hauger C, Matz H, Glittenberg C. Feasibility of intrasurgical spectral-domain optical coherence tomography. Retina. 2011;31(7):1332–6.

  15. 15.

    Ehlers J, Srivastava S, Feiler D, Noonan A, Rollins A, Tao Y. Integrative advances for OCT-guided ophthalmic surgery and intraoperative OCT: microscope integration, surgical instrumentation, and heads-up display surgeon feedback. PLoS ONE. 2014;9(8):e105224.

  16. 16.

    Falkner-Radler C, Glittenberg C, Gabriel M, Binder S. Intrasurgical microscope-integrated spectral domain optical coherence tomography-assisted membrane peeling. Retina. 2015;35(10):2100–6.

  17. 17.

    Lytvynchuk LM, Glittenberg CG, Falkner-Radler CI, Neumaier-Ammerer B, Smretschnig E, Hagen S, Ansari-Shahrezaei S, Binder S. Evaluation of intraocular lens position during phacoemulsification using intraoperative spectral-domain optical coherence tomography. J Cataract Refract Surg. 2016;42(5):694–702.

  18. 18.

    Ehlers JP, Goshe J, Dupps WJ, et al. Determination of feasibility and utility of microscope-integrated optical coherence tomography during ophthalmic surgery: the DISCOVER study RESCAN results. JAMA Ophthalmol. 2015;133(10):1124–32.

  19. 19.

    Lytvynchuk LM, Glittenberg CG, Ansari-Shahrezaei S, Binder S. Intraoperative optical coherence tomography assisted analysis of pars Plana vitrectomy for retinal detachment in morning glory syndrome: a case report. BMC Ophthalmol. 2017;17:134–131.

  20. 20.

    Seider MI, Hahn P. Argus II retinal prosthesis malrotation and repositioning with intraoperative optical coherence tomography in a posterior staphyloma. Clin Ophthalmol. 2015;9:2213.

  21. 21.

    Rachitskaya A, Yuan A, Marino M, Reese J, Ehlers J. Intraoperative OCT imaging of the Argus II retinal prosthesis system. Ophthalmic Surg Lasers Imaging Retina. 2016;47(11):999–1003.

  22. 22.

    ImageJ User Guide. https://imagej.nih.gov/ij/docs/guide/146-30.html. Accessed on 9 Sept 2018.

  23. 23.

    Ahuja AK, Yeoh J, Dorn JD, Caspi A, Wuyyuru V, McMahon MJ, Humayun MS, Greenberg RJ, Dacruz L. Factors affecting perceptual threshold in Argus II retinal prosthesis subjects. Transl Vis Sci Technol. 2013;2(4):1.

  24. 24.

    Ehlers J, Gupta P, Farsiu S, Maldonado R, Kim T, Toth S, Mruthyunjaya P. Evaluation of contrast agents for enhanced visualization in optical coherence tomography. Invest Ophthalmol Vis Sci. 2010;51(12):6614–9.

Download references

Acknowledgements

Prof. S. Binder, Department of Ophthalmology, Eye Center Donaustadt, Sigmund Freud University/Karl Landsteiner Institute for Retinal Research and Imaging (Vienna, Austria).

Author information

Correspondence to Lyubomyr M. Lytvynchuk MD, PhD.

Ethics declarations

Conflict of interest

L.M. Lytvynchuk, C.I. Falkner-Radler, A. Grzybowski, C.G. Glittenberg, F. Shams-Mafi, S. Ansari-Shahrezaei, and S. Binder declare that they have no competing interests.

Ethical standards

The study followed the tenets of the Declaration of Helsinki. The study was approved by the institutional Human Experimentation Committee at Rudolf Foundation Hospital (Vienna, Austria). Signed consent was obtained from the patient according to the Ethic Committee Regulations. Additionally, the consent form to use and publish examination data (including images and videos) was signed by the patients according to the Ethic Committee Regulations at Rudolf Foundation Hospital (Vienna, Austria).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

LL and SB designed the study, carried out the data collection, participated in the surgery, did intraoperative and postoperative iSD-OCT data analysis, and drafted the manuscript. CG, CF, and FS carried out data collection and postoperative iSD-OCT data post-processing and analysis, and helped to draft the manuscript. SAS participated in study design and coordination, did preoperative iSD-OCT data analysis, and helped to draft the manuscript. LL, SAS, and SB generated the idea and aim of the study, performed the surgery and intraoperative iSD-OCT examination, corrected the manuscript. LL, AG and SB summarise the data and wrote the final version of the manuscript. All authors read and approved the final manuscript.

Caption Electronic Supplementary Material

Supplemental material: Video 1. iSD-OCT imaging of the Argus II retinal prosthesis in human and test eye.

Supplemental material: Video 1. iSD-OCT imaging of the Argus II retinal prosthesis in human and test eye.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lytvynchuk, L.M., Falkner-Radler, C.I., Grzybowski, A. et al. Influence of optic media of the human eye on the imaging of Argus® II retinal prosthesis with intraoperative spectral-domain optical coherence tomography. Spektrum Augenheilkd. (2019). https://doi.org/10.1007/s00717-019-0429-x

Download citation

Keywords

  • Retinitis pigmentosa
  • Bionic eye
  • Pars plana vitrectomy
  • Intraoperative imaging
  • Postprocessing

Schlüsselwörter

  • Retinitis pigmentosa
  • Bionisches Auge
  • Pars-plana-Vitrektomie
  • Intraoperative Bildgebung
  • Nachbearbeitung