Advertisement

Spektrum der Augenheilkunde

, Volume 31, Issue 6, pp 220–237 | Cite as

Introduction to swept source optical coherence tomography angiography

  • Carl GlittenbergEmail author
  • Charles Reisman
  • Siamak Ansari-Shahrezaei
Angio-OCT / Medical Retina
  • 168 Downloads

Summary

Swept source optical coherence tomography (OCT) technology and OCT-angiography (OCT-A) are two recent developments that have the potential to significantly change our understanding of retinal pathology and retinal vascular pathophysiology. In order to correctly use these technologies to their full diagnostic potential, a thorough understanding of the technology as well as its benefits and limitations is essential. The aim of this review article is to provide an introductory understanding of how swept source OCT with a 1050 nm wavelength differs from conventional spectral domain OCT using 840 nm wavelength, and what the benefits are. The OCTARA™ swept source OCT angiography algorithm will be explained and compared with other algorithms. The cause and removal of projection artifacts, white band artifacts, black band artifacts, speckle noise and flicker noise in swept source OCT-angiography (OCT-A) will be explained. Layer segmentation boundaries and the reasons for them will be explained. The benefit of wide-field OCT-A will be discussed using case examples. Finally, the challenges of OCT choroidal angiography will be discussed.

Keywords

Optical coherence tomography Swept source OCT OCT choroidal angiography OCT‑A Neovascular AMD 

Einführung in die Swept-source optische Kohärenztomographie-Angiographie

Zusammenfassung

Die optische Kohärenztomographie (OCT) mit Swept-source-Technik und die OCT-Angiographie (OCT-A) sind zwei jüngere Entwicklungen mit dem Potenzial, unser Verständnis der Netzhauterkrankungen und der Pathophysiologie von Netzhautgefäßen erheblich zu wandeln. Will man die neuen Technologien korrekt anwenden und ihr volles diagnostisches Potenzial ausreizen, muss man sie gründlich verstehen und ihre Vorzüge und Limitationen genau kennen. Dieser Übersichtsbeitrag soll eine Einführung darin geben, wie sich die Swept-source-OCT mit einer Wellenlänge von 1050 nm von der konventionellen Spectral-domain-OCT mit einer Wellenlänge von 840 nm unterscheidet und worin der Nutzen liegt. Der Algorithmus der OCTARA™-Swept-source-OCT-Angiographie wird erläutert und mit anderen Algorithmen verglichen. Ursachen und Beseitigung von Projektions‑, Weißband- und Schwarzbandartefakten sowie von körnigem Rauschen und Funkelrauschen in der Swept-source-OCT-Angiographie (OCT-A) werden beschrieben. Des Weiteren sollen die Grenzen der Schichtsegmentierung und ihre Ursachen erläutert werden. Auch der Nutzen der Weitwinkel-OCT‑A wird anhand von Fallbeispielen diskutiert. Zuletzt werden die Herausforderungen der OCT-basierten chorioidalen Angiographie erörtert.

Schlüsselwörter

Optische Kohärenztomographie Swept-source-OCT OCT-basierte chorioidale Angiographie OCT‑A Neovaskuläre altersabhängige Makuladegeneration 

Notes

Conflict of interest

C. Glittenberg: Employee of Topcon Europe Medica. C. Reisman: General Manager, Topcon Medical IT Solutions at Topcon Medical Systems. S. Ansari-Shahrezaei: Unrestricted instrument loan from Topcon Europe Medical.

References

  1. 1.
    Yasuno Y, Miura M, Kawana K, Makita S, Sato M, Okamoto F, et al. Visualization of sub-retinal pigment epithelium morphologies of exudative macular diseases by high-penetration optical coherence tomography. Invest Ophthalmol Vis Sci. 2009;50(1):405–13.CrossRefPubMedGoogle Scholar
  2. 2.
    Ikuno Y, Maruko I, Yasuno Y, Miura M, Sekiryu T, Nishida K, et al. Reproducibility of retinal and choroidal thickness measurements in enhanced depth imaging and high-penetration optical coherence tomography. Invest Ophthalmol Vis Sci. 2011;52(8):5536–40.CrossRefPubMedGoogle Scholar
  3. 3.
    Zhang L, Buitendijk GH, Lee K, Sonka M, Springelkamp H, Hofman A, et al. Validity of automated Choroidal segmentation in SS-OCT and SD-OCT. Invest Ophthalmol Vis Sci. 2015;56(5):3202–11.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Maruko I, Iida T, Sugano Y, Oyamada H, Sekiryu T. Morphologic choroidal and scleral changes at the macula in tilted disc syndrome with staphyloma using optical coherence tomography. Invest Ophthalmol Vis Sci. 2011;52(12):8763–8.CrossRefPubMedGoogle Scholar
  5. 5.
    Flores-Moreno I, Caminal JM, Arias-Barquet L, Rubio-Caso MJ, Catala-Mora J, Vidal-Marti M, et al. En face mode of swept-source optical coherence tomography in circumscribed choroidal haemangioma. Br J Ophthalmol. 2015;  https://doi.org/10.1136/bjophthalmol-2015-307099.Google Scholar
  6. 6.
    Idoate S, Gil-Martinez M, Crim N, Quijano C, Biswas S, Charles S, et al. Swept-source optical coherence tomography of retinal cavernous hemangioma: a new imaging modality. J Pediatr Ophthalmol Strabismus. 2015;52:e4–7.Google Scholar
  7. 7.
    Papavasileiou E, Miller JB, Sobrin L. Swept-source optical coherence tomography findings in convalescent phase of treated sarcoid choroidal granulomas. Retin Cases Brief Rep. 2016;  https://doi.org/10.1097/icb.0000000000000156.PubMedGoogle Scholar
  8. 8.
    Filloy A, Arias L, Ascaso FJ, Caminal JM. Swept source optical coherence tomography imaging of optic disc melanocytoma. Clin Experiment Ophthalmol. 2016;  https://doi.org/10.1111/ceo.12850.PubMedGoogle Scholar
  9. 9.
    Michalewska Z, Michalewski J, Nawrocka Z, Dulczewska-Cichecka K, Nawrocki J. The outer choroidoscleral boundary in full-thickness macular holes before and after surgery a swept-source OCT study. Graefes Arch Clin Exp Ophthalmol. 2015;  https://doi.org/10.1007/s00417-015-2937-y.PubMedGoogle Scholar
  10. 10.
    Flores-Moreno I, Arias-Barquet L, Rubio-Caso MJ, Ruiz-Moreno JM, Duker JS, Caminal JM. En face swept-source optical coherence tomography in neovascular age-related macular degeneration. Br J Ophthalmol. 2015;  https://doi.org/10.1136/bjophthalmol-2014-306422.Google Scholar
  11. 11.
    Yoza R, Murakami T, Uji A, Suzuma K, Yoshitake S, Dodo Y, et al. Characterization of inner retinal spots with inverted reflectivity on en face optical coherence tomography in diabetic retinopathy. Invest Ophthalmol Vis Sci. 2016;57(4):1862–70.CrossRefPubMedGoogle Scholar
  12. 12.
    Li DQ, Choudhry N. Swept-source OCT visualization of macular hole closure in gas-filled eyes. Ophthalmic Surg Lasers Imaging Retina. 2017;48(5):392–8.  https://doi.org/10.3928/23258160-20170428-05.CrossRefPubMedGoogle Scholar
  13. 13.
    Burak Turgut. Optical coherence Tomography Angiography – a general view. Eur Ophthalmic Rev. 2016;10(1):39–42.  https://doi.org/10.17925/EOR.2016.10.01.39.CrossRefGoogle Scholar
  14. 14.
    Wang RK. Optical microangiography: a label free 3D imaging technology to visualize and quantify blood circulations within tissue beds in vivo. IEEE J Sel Top Quantum Electron. 2010;16:545–54.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Tokayer J, Jia Y, Dhalla AH, Huang D. Blood flow velocity quantification using split-spectrum amplitude-decorrelation angiography with optical coherence tomography. Biomed Opt Express. 2013;4:1909–24.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Zhang A, Zhang Q, Chen CL, Wang RK. Methods and algorithms for optical coherence tomography-based angiography: a review and comparison. J Biomed Opt. 2015;20:100901.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Mariampillai A, Standish BA, Moriyama EH, Khurana M, Munce NR, Leung MK, Jiang J, Cable A, Wilson BC, Vitkin IA, Yang VX. Speckle variance detection of microvasculature using swept-source optical coherence tomography. Opt Lett. 2008;33:1530–2.CrossRefPubMedGoogle Scholar
  18. 18.
    Jia Y, Tan O, Tokayer J, Potsaid B, Wang Y, Liu JJ, Kraus MF, Subhash H, Fujimoto JG, Hornegger J, Huang D. Split-spectrum amplitude-decorrelation angiography with optical coherence tomography. Opt Express. 2012;20:4710–25.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Huang Y, Zhang Q, Thorell MR, An L, Durbin MK, Laron M, Sharma U, Gregori G, Rosenfeld PJ, Wang RK. Swept-source OCT angiography of the retinal vasculature using intensity differentiation-based optical microangiography algorithms. Ophthalmic Surg Lasers Imaging Retina. 2014;45:382–9.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Kuehlewein L, Sarraf D, Sadda SR. OCT Angiography in age-related macular degeneration. Retina Today. 2015;10:73–5.Google Scholar
  21. 21.
    Pierro L, Battaglia Parodi M, Rabiolo A, Introini U, Querques G, Bandello F. Optical coherence Tomography Angiography of miscellaneous retinal disease. Dev Ophthalmol. 2016;56:174–80.CrossRefPubMedGoogle Scholar
  22. 22.
    Kuehlewein L, Tepelus TC, An L, Durbin MK, Srinivas S, Sadda SR. Noninvasive visualization and analysis of the human Parafoveal capillary network using swept source OCT optical Microangiography. Invest Ophthalmol Vis Sci. 2015;56(6):3984–8.CrossRefPubMedGoogle Scholar
  23. 23.
    Nicolo M, Rosa R, Musetti D, Musolino M, Traverso CE. Early swept-source optical coherence Tomography Angiography findings in unilateral acute idiopathic Maculopathy. Ophthalmic Surg Lasers Imaging Retina. 2016;47(2):180–2.CrossRefPubMedGoogle Scholar
  24. 24.
    Stanga PE, Papayannis A, Tsamis E, Chwiejczak K, Stringa F, Jalil A, et al. Swept-source optical coherence tomography angiography of paediatric macular diseases. Dev Ophthalmol. 2016;56:166–73.CrossRefPubMedGoogle Scholar
  25. 25.
    Stanga PE, Papayannis A, Tsamis E, Stringa F, Cole T, D’Souza Y, et al. New findings in diabetic Maculopathy and proliferative disease by swept-source optical coherence Tomography Angiography. Dev Ophthalmol. 2016;56:113–21.CrossRefPubMedGoogle Scholar
  26. 26.
    Stanga PE, Tsamis E, Papayannis A, Stringa F, Cole T, Jalil A. Swept-source optical coherence Tomography Angio (Topcon corp, Japan): technology review. Dev Ophthalmol. 2016;56:13–7.CrossRefPubMedGoogle Scholar
  27. 27.
    Choi W, Moult EM, Waheed NK, Adhi M, Lee B, Lu CD, et al. Ultrahigh-speed, swept-source optical coherence Tomography Angiography in nonexudative age-related macular degeneration with geographic atrophy. Ophthalmology. 2015;122(12):2532–44.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Nicolò M, Rosa R, Musetti D, Musolino M, Saccheggiani M. Traverso Choroidal vascular flow area in central serous Chorioretinopathy using swept-source optical coherence Tomography Angiography. Invest Ophthalmol Vis Sci. 2017;58(4):2002–10.  https://doi.org/10.1167/iovs.17-21417.CrossRefPubMedGoogle Scholar
  29. 29.
    Ghasemi Falavarjani K, Tian JJ, Akil H, Garcia GA, Sadda SR, Sadun AA. Swept-source optical coherence Tomography angiography of the optic disk in optic neuropathy. Retina (Philadelphia, Pa). 2016;36(Suppl 1):168–S77.  https://doi.org/10.1097/IAE.0000000000001259.CrossRefGoogle Scholar
  30. 30.
    Li DQ, Golding J, Glittenberg C, Choudhry N. Multimodal imaging features in acute exudative Paraneoplastic polymorphous Vitelliform Maculopathy. Ophthalmic Surg Lasers Imaging Retina. 2016;47(12):1143–6.  https://doi.org/10.3928/23258160-20161130-09.CrossRefPubMedGoogle Scholar
  31. 31.
    Ahmed D, Stattin M, Glittenberg C, Krebs I, Ansari-Shahrezaei S. Stellate non-hereditary idiopathic Foveomacular Retinoschisis accompanied by contralateral peripheral Retinoschisus. Retin Cases Brief Rep. 2017;16  https://doi.org/10.1097/ICB.0000000000000544.Google Scholar
  32. 32.
    Spaide RF, Klancnik JM, Cooney MJ. Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography. JAMA Ophthalmol. 2015;133:45–50.CrossRefPubMedGoogle Scholar
  33. 33.
    Akil H, Falavarjani KG, Sadda SR, Sadun AA. Optical coherence Tomography Angiography of the optic disc: an overview. J Ophthalmic Vis Res. 2017;12(1):98–105.  https://doi.org/10.4103/2008-322X.200162.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Ghasemi Falavarjani K, Tian JJ, Akil H, Garcia GA, Sadda SR, Sadun AA. Swept-source optical coherence Tomography Angiography of the optic disk in optic neuropathy. Retina (Philadelphia, Pa). 2016;  https://doi.org/10.1097/iae.0000000000001259.Google Scholar
  35. 35.
    Drexler W. Swept source OCT takes optical medical imaging to the next level. BioPhotonics. 2016;Oct. https://www.photonics.com/Article.aspx?AID=61127.
  36. 36.
    Reisman C, Kubota A, Akiba M, Chisholm C, Sinai MJ. Optical coherence Tomography Angiography imaging with Topcon’s one-micrometer wavelength swept source optical coherence Tomography. In: Huang D, Lumbroso B, Jia Y, Waheed NK, editors. Optical coherence Tomography Angiography of the eye. Thorofare NJ: SLACK Incorporated; 2018. pp. 71–80.Google Scholar

Copyright information

© Springer-Verlag GmbH Austria 2017

Authors and Affiliations

  1. 1.Karl Landsteiner Institute for Retinal Research and ImagingViennaAustria
  2. 2.Department of OphthalmologyRudolf Foundation HospitalViennaAustria
  3. 3.Department of OphthalmologyMedical University of GrazGrazAustria
  4. 4.Topcon Europe Medical B.V.Capelle aan den IJsselThe Netherlands
  5. 5.Topcon Medical IT Solutions at Topcon Medical SystemsOaklandUSA

Personalised recommendations