Advertisement

Spektrum der Augenheilkunde

, Volume 31, Issue 5, pp 194–205 | Cite as

Leitbild Diagnose und Therapie retinaler Venenverschlüsse

  • Martin WegerEmail author
  • Stefan Egger
kommissionsbericht
  • 91 Downloads

Epidemiologie

Retinale Venenverschlüsse stellen die zweithäufigste Netzhautgefäßerkrankung nach der diabetischen Retinopathie dar. Je nach Lokalisation des Verschlusses unterscheidet man einen Zentral‑, Hemiretinal- und Astvenenverschluss. Diese unterscheiden sich nicht nur in der Lokalisation des Verschlusses, sondern auch in der Visusprognose, Art und Prävalenz der Risikofaktoren und teils in den zur Verfügung stehenden Therapieoptionen.

Die alters- und geschlechtsstandardisierte Gesamtprävalenz von Astvenenverschlüssen liegt in einer kaukasischen Bevölkerung bei 2,82/1000, wohingegen diese bei Zentralvenenverschlüssen 0,88/1000 beträgt [1]. Hemiretinalvenenverschlüsse wiederum haben eine geringe Prävalenz als retinale Zentralvenenverschlüsse. Daten betreffend die Prävalenz von Hemiretinalvenenverschlüssen aus populationsbasierten Studien liegen allerdings nicht auf. Es ist darauf hinzuweisen, dass in den meisten Studien Hemiretinalvenenverschlüsse nicht als eigene Entität...

Notes

Interessenkonflikt

M. Weger und S. Egger geben an, dass kein Interessenkonflikt besteht.

Literatur

  1. 1.
    Rogers S, McIntosh RL, Cheung N, et al. The prevalence of retinal vein occlusion: pooled data from population studies from the United States, Europe, Asia and Australia. Ophthalmology. 2010;117(2):313–9.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Hayreh SS, Zimmerman B, McCarthy MJ, Podhajsky P. Systemic diseases associated with various types of retinal vein occlusion. Am J Ophthalmol. 2001;131(1):61–77.CrossRefPubMedGoogle Scholar
  3. 3.
    Hayreh SS, Zimmerman MB, Podhajsky P. Incidence of various types of retinal vein occlusion and their recurrence and demographic characteristics. Am J Ophthalmol. 1994;117(4):429–41.CrossRefPubMedGoogle Scholar
  4. 4.
    Deramo VA, Cox TA, Syed AB, Lee PP, Fekrat S. Vision-related quality of life in people with central retinal vein occlusion using the 25-item National Eye Institute Visual Function Questionnaire. Arch Ophthalmol. 2003;121(9):1297–302.CrossRefPubMedGoogle Scholar
  5. 5.
    Awdeh RM, Elsing SH, Deramo VA, Stinnett S, Lee PP, Fekrat S. Vision-related quality of life in persons with unilateral branch retinal vein occlusion using the 25-item National Eye Institute Visual Function Questionnaire. Br J Ophthalmol. 2001;94(3):319–23.CrossRefGoogle Scholar
  6. 6.
    Cugati S, Wang JJ, Knudtson MD, et al. Retinal vein occlusion and vascular mortality: pooled data analysis of 2 population-based cohorts. Ophthalmology. 2007;114(3):520–4.CrossRefPubMedGoogle Scholar
  7. 7.
    Werther W, Chu L, Holekamp N, Do DV, Rubio AG. Myocardial infarction and cerebrovascular accident in patients with retinal vein occlusion. Arch Ophthalmol. 2011;129(3):326–31.CrossRefPubMedGoogle Scholar
  8. 8.
    Ho JD, Liou SW, Lin HC. Retinal vein occlusion and the risk of stroke development: a five-year follow-up study. Am J Ophthalmol. 2009;137(2):283–90.CrossRefGoogle Scholar
  9. 9.
    O’Mahoney PR, Wong DT, Ray IG. Retinal vein occlusion and traditional risk factors for atherosclerosis. Arch Ophthalmol. 2008;126(5):692–9.CrossRefPubMedGoogle Scholar
  10. 10.
    Stojakovic T, Scharnagl H, März W, Winkelmann BR, Boehm BO, Schmut O. Low density lipoprotein triglycerides and lipoprotein(a) are risk factors for retinal vascular occlusion. Clin Chim Acta. 2007;382(1–2):77–81.CrossRefPubMedGoogle Scholar
  11. 11.
    The Eye Disease Case-Control Study Group. Risk factors for central retinal vein occlusion. Arch Ophthalmol. 1996;114(5):545–54.CrossRefGoogle Scholar
  12. 12.
    The Eye Disease Case-Control Study Group. Risk factors for branch vein occlusion. Am J Ophthalmol. 1993;116(3):286–96.CrossRefGoogle Scholar
  13. 13.
    Hayreh SS, Zimmermann MB, Beri M, Podhajsky P. Intraocular pressure abnormalities associated with central and hemiretinal vein occlusion. Ophthalmology. 2004;111(1):133–41.CrossRefPubMedGoogle Scholar
  14. 14.
    Kimmel AS, McCarthy MJ, Blodi CF, Folk JC. Branch retinal vein occlusion in sarcoidosis. Am J Ophthalmol. 1989;107(5):561–2.CrossRefPubMedGoogle Scholar
  15. 15.
    Lobes LA Jr, Folk JC. Syphilitic phlebitis simulating branch vein occlusion. Ann Ophthalmol. 1981;13(7):825–7.PubMedGoogle Scholar
  16. 16.
    The Central Vein Occlusion Study Group.. Natural history and clinical management of central retinal vein occlusion. Arch Ophthalmol. 1997;115(4):486–91.CrossRefGoogle Scholar
  17. 17.
    Kieselbach G, Bolz M, Egger S, et al. Consensus Statement. Retinaler Venenverschluss (RVV). Diagnostik und Therapie. Österreichische Ärztezeitung 2012; Supplementum Februar:1–11.Google Scholar
  18. 18.
    The Branch Vein Occlusion Study Group. Argon laser photocoagulation for macular edema in branch vein occlusion. Am J Ophthalmol. 1984;98(3):271–82.CrossRefGoogle Scholar
  19. 19.
    Gutman FA, Zegarra H. The natural course of temporal retinal branch vein occlusion. Trans Am Acad Ophthalmol Otolaryngol. 1974;78(2):OP178–92.PubMedGoogle Scholar
  20. 20.
    Michels RG, Gass JD. The natural course of retinal branch vein obstruction. Trans Am Acad Ophthalmol Otolaryngol. 1974;87(2):OP166–77.Google Scholar
  21. 21.
    Hayreh SS, Zimmerman MB. Hemicentral retinal vein occlusion: natural history of visual outcome. Retina. 2012;32(1):68–76.CrossRefPubMedGoogle Scholar
  22. 22.
    Funk M, Kreichbaum K, Prager F, et al. Intraocular concentrations of growth factors and cytokines in retinal vein occlusion and the effect of therapy with bevacizumab. Invest Ophthalmol Vis Sci. 2009;50(3):1025–32.CrossRefPubMedGoogle Scholar
  23. 23.
    Lim JW. Intravitreal bevacizumab and cytokine levels in major and macular branch vein occlusion. Ophthalmologica. 2011;225(3):150–4.CrossRefPubMedGoogle Scholar
  24. 24.
    Koss MJ, Pfister M, Rothweiler F, et al. Comparison of cytokine levels from undiluted vitreous of untreated patients with retinal vein occlusion. Acta Ophthalmol. 2012;90(2):e98–103.CrossRefPubMedGoogle Scholar
  25. 25.
    Campochiaro PA, Heier JS, Feiner L, et al. Ranibizumab for macular edema following branch vein occlusion: six-month primary end point results of a phase III study. Ophthalmology. 2010;117(6):1102–12.CrossRefPubMedGoogle Scholar
  26. 26.
    Brown DM, Campochiaro PA, Bhisitkul RB, et al. Sustained benefits from ranibizumab for macular edema following branch retinal vein occlusion:12-month outcomes of a phase III study. Ophthalmology. 2011;118(8):1594–602.CrossRefPubMedGoogle Scholar
  27. 27.
    Brown DM, Campochiaro PA, Singh RP, et al. Ranibizumab for macular edema following central retinal vein occlusion: six-month primary end point results of a phase III study. Ophthalmology. 2010;117(6):1124–33.CrossRefPubMedGoogle Scholar
  28. 28.
    Campochiaro PA, Brown DA, Awh CC, et al. Sustained benefits from ranibizumab for macular edema following central retinal vein occlusion: twelve-month outcomes of a phase III study. Ophthalmology. 2011;118(10):2041–9.CrossRefPubMedGoogle Scholar
  29. 29.
    Heier JS, Campochiaro PA, Yau L, et al. Ranibizumab for macular edema due to retinal vein occlusions: long-term follow-up in the HORIZON trial. Ophthalmology. 2012;119(4):802–9.CrossRefPubMedGoogle Scholar
  30. 30.
    Campochiaro PA, Raafay S, Pearlman J, et al. Long-term outcomes in patients with retinal vein occlusion treated with ranibizumab. The RETAIN Study. Ophthalmology. 2014;121(1):209–19.CrossRefPubMedGoogle Scholar
  31. 31.
    Campochiaro PA, Wykoff C, Singer M, et al. Monthly versus as-needed ranibizumab injections in patients with retinal vein occlusions. Ophthalmology. 2014;121(12):2432–42.CrossRefPubMedGoogle Scholar
  32. 32.
    Prager F, Michels S, Kriechbaum K, et al. Intravitreal bevacizumab (avastin) for macular oedema secondary to retinal vein occlusion: 12-month results of a prospective clinical trial. Br J Ophthalmol. 2009;93(4):452–6.CrossRefPubMedGoogle Scholar
  33. 33.
    Wu L, Arevalo JF, Berrocal MH, et al. Comparison of two doses of intravitreal bevacizumab as primary treatment of macular edema secondary to branch retinal vein occlusions: results of the Pan American Collaborative Retina Study Group at 24 months. Retina. 2009;29(10):1396–403.CrossRefPubMedGoogle Scholar
  34. 34.
    Wu L, Arevalo JF, Berrocal MH, et al. Comparison of two doses of intravitreal bevacizumab as primary treatment of macular edema secondary to central retinal vein occlusions: results of the Pan American Collaborative Retina Study Group at 24 months. Retina. 2010;30(7):1002–11.CrossRefPubMedGoogle Scholar
  35. 35.
    Kreutzer TC, Alge CS, Wolf AH, et al. Intravitreal bevacizumab for the treatment of macular oedema secondary to branch retinal vein occlusion. Br J Ophthalmol. 2008;92(3):351–5.CrossRefPubMedGoogle Scholar
  36. 36.
    Priglinger SG, Wolf AH, Kreutzer TC, et al. Intravitreal bevacizumab injections for treatment of central retinal vein occlusion: six-month results of a prospective trial. Retina. 2007;27(8):1004–12.CrossRefPubMedGoogle Scholar
  37. 37.
    Wroblewski JJ, Wells JA 3rd, Adamis AP, et al. Pegaptanib sodium for macular edema secondary to central retinal vein occlusion. Arch Ophthalmol. 2009;127(4):374–80.CrossRefPubMedGoogle Scholar
  38. 38.
    Wroblewski JJ, Wells JA, Gonzales CR. Pegaptanib sodium for macular edema secondary to branch retinal vein occlusion. Am J Ophthalmol. 2010;149(1):147–54.CrossRefPubMedGoogle Scholar
  39. 39.
    Boyer D, Heier J, Brown DM, et al. Vascular endothelial growth factor Trap-Eye for macular edema secondary to central retinal vein occlusion: six-month results of the phase 3 COPERNICUS study. Ophthalmology. 2012;119(5):1024–32.CrossRefPubMedGoogle Scholar
  40. 40.
    Holz FG, Roider J, Ogura Y, et al. VEGF Trap-Eye for macular oedema secondary to central retinal vein occlusion: 6‑month results of the phase III GALILIEO study. Br J Ophthalmology. 2013;97(3):278–84.CrossRefGoogle Scholar
  41. 41.
    Brown DM, Heier J, Clark L, et al. Intravitreal aflibercept injection for macular edema secondary to central retinal vein occlusion: 1‑year results from the phase 3 COPERNICUS study. Am J Ophthalmol. 2013;155(10):429–37.CrossRefPubMedGoogle Scholar
  42. 42.
    Heier JS, Clark L, Boyer D, et al. Intravitreal aflibercept injection for macular edema due to central retinal vein occlusion: two-year results from the COPERNICUS study. Ophthalmology. 2014;121(7):1414–20.CrossRefPubMedGoogle Scholar
  43. 43.
    Korobelnik JF, Holz FG, Roider J, et al. Intravitreal aflibercept injection for macular edema resulting from central retinal vein occlusion: one-year results of the Phase 3 Galileo Study. Ophthalmology. 2014;121(1):202–8.CrossRefPubMedGoogle Scholar
  44. 44.
    Ogura Y, Roider J, Korobelnik JF, et al. Intravitreal aflibercept for macular edema secondary to central retinal vein occlusion: 18-month results of the phase 3 GALILEO study. Am J Ophthalmol. 2014;158(5):1032–8.CrossRefPubMedGoogle Scholar
  45. 45.
    Campochiaro PA, Clark L, Boyer D, et al. Intravitreal aflibercept for macular edema following branch retinal vein occlusion: the 24-week results of the VIBRANT study. Ophthalmology. 2015;122(3):538–44.CrossRefPubMedGoogle Scholar
  46. 46.
    Clark WL, Boyer DS, Heier J, et al. Intravitreal aflibercept for macular edema following branch retinal vein occlusion: 52-weeks results of the VIBRANT study. Ophthalmology. 2016;123(2):330–6.CrossRefPubMedGoogle Scholar
  47. 47.
    Yoshimura T, Sonoda KH, Sugahara M, et al. Comprehensive analysis of inflammatory immune mediators in vitreoretinal diseases. PLOS ONE. 2009;4(12):e8158.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Nehme A, Edelman J. Dexamethasone inhibits high glucose‑, TNF-alpha-, and IL-1 beta induced secretion of inflammatory and angiogenic mediators from retinal microvascular pericytes. Invest Ophthalmol Vis Sci. 2008;49(5):2030–8.CrossRefPubMedGoogle Scholar
  49. 49.
    McAllister IL, Vijaysekaran S, Chen SD, Yu DY. Effect of triamcinolone acetonide on vascular endothelial growth factor and occludin levels in branch retinal vein occlusion. Am J Ophthalmol. 2009;147(5):838–46.CrossRefPubMedGoogle Scholar
  50. 50.
    Scott IU, Ip MS, VanVeldhuisen PC, et al. A randomized trial comparing the efficacy and safety of intravitreal triamcinolone with standard care to treat vision loss associated with macular edema secondary to branch retinal vein occlusion: the Standard Care vs Corticosteroid for Retinal Vein Occlusion (SCORE) study report 6. Arch Ophthalmol. 2009;127(9):1125–8.Google Scholar
  51. 51.
    Ip MS, Scott IU, VanVeldhuisen PC, et al. A randomized trial comparing the efficacy and safety of intravitreal triamcinolone with observation to treat vision loss associated with macular edema secondary to central retinal vein occlusion: the Standard Care vs Corticosteroid for Retinal Vein Occlusion (SCORE) study report 5. Arch Ophthalmol. 2009;127(9):1101–14.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Haller JA, Bandello F, Belfort R Jr, et al. Dexamethasone intravitreal implant in patients with macular edema related to branch and central retinal vein occlusion: twelve months study results. Ophthalmology. 2011;118(12):2453–60.CrossRefPubMedGoogle Scholar
  53. 53.
    Safety and efficacy study of Ozurdex® compared to Lucentis® in patients with branch retinal vein occlusion. Available from: http://www.clinicaltrials.gov/ct2/show/NCT01427751.
  54. 54.
    Hattenbach LO, Feltgen N, Bertelmann T, et al. Head-to-head comparison of ranibizumab PRN versus single-dose dexamethasone for branch retinal vein occlusion (COMRAD-B). Acta Ophthalmol. 2017 Mar 2.  https://doi.org/10.1111/aos.13381.
  55. 55.
    Hoerauf H, Feltgen N, Weiss C, et al. Clinical efficacy and safety of ranibizumab versus dexamethasone for central retinal vein occlusion (COMRADE-C): a European label study. Am J Ophthalmol. 2016;169:258–67.CrossRefPubMedGoogle Scholar
  56. 56.
    Scott I, VanVeldhuisen P, Ip M, et al. Effect of bevacizumab vs aflibercept on visual acuity among patients with macular edema due to central retinal vein occlusion. JAMA. 2017 May 23;317(20):2072-2087.  https://doi.org/10.1001/jama.2017.4568.PubMedGoogle Scholar
  57. 57.
    Narayanan R, Panchal B, Das T, et al. A randomised, double-masked, controlled study of the efficacy and safety of intravitreal bevacizumab and ranibizumab in the treatment of macular oedema due to branch retinal vein occlusion: MARVEL Report Nr. 1. Br J Ophthalmol. 2015;99(7):954–9.CrossRefPubMedGoogle Scholar
  58. 58.
    Eadie JA, Ip MS, Kulkarni AD. Response to aflibercept as secondary therapy in patients with persistent retinal edema due to central retinal vein occlusion initially treated with bevacizumab or ranibizumab. Retina. 2014;34(12):2439–43.CrossRefPubMedGoogle Scholar
  59. 59.
    Sharareh B, et al. Recalcitrant macular edema after intravitreal bevacizumab is responsive to an intravitreal dexamethason implant in retinal vein occlusion. Retina. 2013;33(6):1227–31.CrossRefPubMedGoogle Scholar
  60. 60.
    Papakostas TD, Gallemore R, Taban M, Onishi S, Wallsh J. Intravitreal aflibercept for macular oedema secondary to central retinal vein occlusion in patients with prior treatment with bevacizumab and ranibizumab. Eye. 2016;30(1):79–84.CrossRefPubMedGoogle Scholar
  61. 61.
    The Central Vein Occlusion Study Group M report. Evaluation of grid pattern photocoagulation for macular edema in central retinal vein occlusion. Ophthalmology. 1995;102(10):1425–33.CrossRefGoogle Scholar
  62. 62.
    The Central Vein Occlusion Study Group N report. A randomized clinical trial of early panretinal photocoagulation for ischemic central vein occlusion. Ophthalmology. 1995;102(10):1434–44.CrossRefGoogle Scholar
  63. 63.
    Stellungnahme der Deutschen Ophthalmologischen Gesellschaft, der Retinologischen Gesellschaft und des Berufsverbandes der Augenärzte Deutschlands zur Therapie des Makulaödems beim retinalen Venenverschluss (2012). Available from: http://www.dog.org. Accessed: 4 Apr 2017.Google Scholar

Copyright information

© Springer-Verlag GmbH Austria 2017

Authors and Affiliations

  1. 1.Medizinische Universität GrazGrazÖsterreich
  2. 2.Landeskrankenhaus Salzburg – Universitätsklinikum der PMUSalzburgÖsterreich

Personalised recommendations