Advertisement

Spektrum der Augenheilkunde

, Volume 27, Issue 3, pp 163–170 | Cite as

Leitbild Diagnose und Therapie retinaler Venenverschlüsse

  • Martin WegerEmail author
  • Stefan Egger
  • für die Netzhautkommission
bericht

Epidemiologie

Retinale Venenverschlüsse stellen die zweithäufigste Netzhautgefäßerkrankung nach der diabetischen Retinopathie dar. Je nach Lokalisation des Verschlusses unterscheidet man einen Zentral-, Hemiretinal- und Astvenenverschluss. Diese unterscheiden sich nicht nur in der Lokalisation des Verschlusses, sondern auch in der Visusprognose, Art und Prävalenz der Risikofaktoren und teils in den zur Verfügung stehenden Therapieoptionen.

Die alters- und geschlechtsstandardisierte Gesamtprävalenz von Astvenenverschlüssen liegt in einer kaukasischen Bevölkerung bei 2,82/1000, wohingegen diese bei Zentralvenenverschlüssen 0,88/1000 beträgt [1]. Hemiretinalvenenverschlüsse wiederum haben eine geringere Prävalenz als retinale Zentralvenenverschlüsse. Daten betreffend die Prävalenz von Hemiretinalvenenverschlüssen aus populationsbasierten Studien liegen allerdings nicht auf. Es ist darauf hinzuweisen, dass in den meisten Studien Hemiretinalvenenverschlüsse nicht als eigene Entität...

Literatur

  1. 1.
    Rogers S, McIntosh RL, Cheung N, et al. The prevalence of retinal vein occlusion: pooled data from population studies from the United States, Europe, Asia and Australia. Ophthalmology. 2010;117:313–9.PubMedCrossRefGoogle Scholar
  2. 2.
    Hayreh SS, Zimmerman B, McCarthy MJ, Podhajsky P. Systemic diseases associated with various types of retinal vein occlusion. Am J Ophthalmol. 2001;131:61–77.PubMedCrossRefGoogle Scholar
  3. 3.
    Hayreh SS, Zimmerman MB, Podhajsky P. Incidence of various types of retinal vein occlusion and their recurrence and demographic characteristics. Am J Ophthalmol. 1994;117:429–41.PubMedGoogle Scholar
  4. 4.
    Deramo VA, Cox TA, Syed AB, Lee PP, Fekrat S. Vision-related quality of life in people with central retinal vein occlusion using the 25-item national eye institute visual function questionnaire. Arch Ophthalmol. 2003;121:1297–302.PubMedCrossRefGoogle Scholar
  5. 5.
    Awdeh RM, Elsing SH, Deramo VA, Stinnett S, Lee PP, Fekrat S. Vision-related quality of life in persons with unilateral branch retinal vein occlusion using the 25-item national eye institute visual function questionnaire. Br J Ophthalmol. 2010;94:319–23.PubMedCrossRefGoogle Scholar
  6. 6.
    Cugati S, Wang JJ, Knudtson MD, et al. Retinal vein occlusion and vascular mortality: pooled data analysis of 2 population-based cohorts. Ophthalmology. 2007;114:520–4.PubMedCrossRefGoogle Scholar
  7. 7.
    Werther W, Chu L, Holekamp N, Do DV, Rubio RG. Myocardial infarction and cerebrovascular accident in patients with retinal vein occlusion. Arch Ophthalmol. 2011;129:326–31.PubMedCrossRefGoogle Scholar
  8. 8.
    Ho JD, Liou SW, Lin HC. Retinal vein occlusion and the risk of stroke development: a five-year follow-up study. Am J Ophthalmol. 2009;137:283–90.CrossRefGoogle Scholar
  9. 9.
    O’Mahoney PR, Wong DT, Ray JG. Retinal vein occlusion and traditional risk factors for atherosclerosis. Arch Ophthalmol. 2008;126:692–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Stojakovic T, Scharnagl H, März W, Winkelmann BR, Boehm BO, Schmut O. Low density lipoprotein triglycerides and lipoprotein(a) are risk factors for retinal vascular occlusion. Clin Chim Acta. 2007;382:77–81.PubMedCrossRefGoogle Scholar
  11. 11.
    The Eye Disease Case-Control Study Group. Risk factors for central retinal vein occlusion. Arch Ophthalmol. 1996;114:545–54.CrossRefGoogle Scholar
  12. 12.
    The Eye Disease Case-Control Study Group. Risk factors for branch retinal vein occlusion. Am J Ophthalmol. 1993;116:286–96.Google Scholar
  13. 13.
    Hayreh SS, Zimmerman MB, Beri M, Podhajsky P. Intraocular pressure abnormalities associated with central and hemiretinal vein occlusion. Ophthalmology. 2004;111:133–41.PubMedCrossRefGoogle Scholar
  14. 14.
    Kimmel AS, McCarthy MJ, Blodi CF, Folk JC. Branch retinal vein occlusion in sarcoidosis. Am J Ophthalmol. 1989;107:561–2.PubMedGoogle Scholar
  15. 15.
    Lobes LA Jr, Folk JC. Syphilitic phlebitis simulating branch vein occlusion. Ann Ophthalmol. 1981;13:825–7.PubMedGoogle Scholar
  16. 16.
    The Central Vein Occlusion Study Group. Natural history and clinical management of central retinal vein occlusion. Arch Ophthalmol. 1997;115:486–91.CrossRefGoogle Scholar
  17. 17.
    Consensus Statement. Retinaler Venenverschluss (RVV). Diagnostik und Therapie. Österreichische Ärztezeitung 2012; Supplementum Februar:1–11.Google Scholar
  18. 18.
    The Branch Vein Occlusion Study Group. Argon laser photocoagulation for macular edema in branch vein occlusion. Am J Ophthalmol. 1984;98:271–82.Google Scholar
  19. 19.
    Gutman FA, Zegarra H. The natural course of temporal retinal branch vein occlusion. Trans Am Acad Ophthalmol Otolaryngol. 1974;78:OP178–92.Google Scholar
  20. 20.
    Michels RG, Gass JD. The natural course of retinal branch vein obstruction. Trans Am Acad Ophthalmol Otolaryngol. 1974;87:OP166–77.Google Scholar
  21. 21.
    Hayreh SS, Zimmerman MB. Hemicentral retinal vein occlusion: natural history of visual outcome. Retina. 2012;32:68–76.PubMedCrossRefGoogle Scholar
  22. 22.
    Funk M, Kriechbaum K, Prager F, et al. Intraocular concentrations of growth factors and cytokines in retinal vein occlusion and the effect of therapy with bevacizumab. Invest Ophthalmol Vis Sci. 2009;50:1025–32.PubMedCrossRefGoogle Scholar
  23. 23.
    Lim JW. Intravitreal bevacizumab and cytokine levels in major and macular branch retinal vein occlusion. Ophthalmologica. 2011;225:150–4.PubMedCrossRefGoogle Scholar
  24. 24.
    Koss MJ, Pfister M, Rothweiler F, et al. Comparison of cytokine levels from undiluted vitreous of untreated patients with retinal vein occlusion. Acta Ophthalmol. 2012;90(2):e98–e103. doi: 10.1111/j.1755-3768.2011.02292.x.PubMedCrossRefGoogle Scholar
  25. 25.
    Campochiaro PA, Heier JS, Feiner L, et al. Ranibizumab for macular edema following branch retinal vein occlusion: six-month primary end point results of a phase III study. Ophthalmology. 2010;117:1102–12.PubMedCrossRefGoogle Scholar
  26. 26.
    Brown DM, Campochiaro PA, Bhisitkul RB, et al. Sustained benefits from ranibizumab for macular edema following branch retinal vein occlusion: 12-month outcomes of a phase III study. Ophthalmology. 2011;118:1594–602.PubMedCrossRefGoogle Scholar
  27. 27.
    Brown DM, Campochiaro PA, Singh RP, et al. Ranibizumab for macular edema following central retinal vein occlusion: six-month primary end point results of a phase III study. Ophthalmology. 2010;117:1124–33.PubMedCrossRefGoogle Scholar
  28. 28.
    Campochiaro PA, Brown DA, Awh CC, et al. Sustained benefits from ranibizumab for macular edema following central retinal vein occlusion: twelve-month outcomes of a phase III study. Ophthalmology. 2011;118:2041–9.PubMedCrossRefGoogle Scholar
  29. 29.
    Heier JS, Campochiaro PA, Yau L, et al. Ranibizumab for macular edema due to retinal vein occlusions: long-term follow-up in the HORIZON trial. Ophthalmology. 2012;119:802–9.PubMedCrossRefGoogle Scholar
  30. 30.
    Prager F, Michels S, Kriechbaum K, et al. Intravitreal bevacizumab (Avastin) for macular oedema secondary to retinal vein occlusion: 12-month results of a prospective clinical trial. Br J Ophthalmol. 2009;93:452–6.PubMedCrossRefGoogle Scholar
  31. 31.
    Wu L, Arevalo JF, Berrocal MH, et al. Comparison of two doses of intravitreal bevacizumab as primary treatment for macular edema secondary to branch retinal vein occlusions: results of the Pan American Collaborative Retina Study Group at 24 months. Retina. 2009;29:1396–403.PubMedCrossRefGoogle Scholar
  32. 32.
    Wu L, Arevalo JF, Berrocal MH, et al. Comparison of two doses of intravitreal bevacizumab as primary treatment for macular edema secondary to central retinal vein occlusions: results of the Pan American Collaborative Retina Study Group at 24 months. Retina. 2010;30:1002–11.PubMedCrossRefGoogle Scholar
  33. 33.
    Kreutzer TC, Alge CS, Wolf AH, et al. Intravitreal bevacizumab for the treatment of macular oedema secondary to branch retinal vein occlusion. Br J Ophthalmol. 2008;92:351–5.PubMedCrossRefGoogle Scholar
  34. 34.
    Priglinger SG, Wolf AH, Kreutzer TC, et al. Intravitreal bevacizumab injections for treatment of central retinal vein occlusion: six-month results of a prospective trial. Retina. 2007;27:1004–12.PubMedCrossRefGoogle Scholar
  35. 35.
    Wroblewski JJ, Wells JA 3rd, Adamis AP, et al. Pegaptanib sodium for macular edema secondary to central retinal vein occlusion. Arch Ophthalmol. 2009;127:374–80.PubMedCrossRefGoogle Scholar
  36. 36.
    Wroblewski JJ, Wells JA 3rd, Gonzales CR. Pegaptanib sodium for macular edema secondary to branch retinal vein occlusion. Am J Ophthalmol. 2010;149:147–54.PubMedCrossRefGoogle Scholar
  37. 37.
    Clark W. VEGF Trap-Eye for Retinal Vein Occlusion: COPERNICUS and GALLILEO, American Academy of Ophthalmology 2011.Google Scholar
  38. 38.
    Boyer D, Heier J, Brown DM, et al. Vascular endothelial growth factor Trap-Eye for macular edema secondary to central retinal vein occlusion: six-month results of the phase 3 COPERNICUS study. Ophthalmology. 2012;119:1024–32.PubMedCrossRefGoogle Scholar
  39. 39.
    Yoshimura T, Sonoda KH, Sugahara M, et al. Comprehensive analysis of inflammatory immune mediators in vitreoretinal diseases. PLoS One. 2009;4:e8158.PubMedCrossRefGoogle Scholar
  40. 40.
    Nehme A, Edelman J. Dexamethasone inhibits high glucose-, TNF-alpha-, and IL-1 beta induced secretion of inflammatory and angiogenic mediators from retinal microvascular pericytes. Invest Ophthalmol Vis Sci. 2008;49:2030–8.PubMedCrossRefGoogle Scholar
  41. 41.
    McAllister IL, Vijaysekaran S, Chen SD, Yu DY. Effect of triamcinolone acetonide on vascular endothelial growth factor and occludin levels in branch retinal vein occlusion. Am J Ophthalmol. 2009;147:838–46.PubMedCrossRefGoogle Scholar
  42. 42.
    Scott IU, Ip MS, VanVeldhuisen PC, et al. A randomized trial comparing the efficacy and safety of intravitreal triamcinolone with standard care to treat vision loss associated with macular edema secondary to branch retinal vein occlusion: the Standard Care vs Corticosteroid for Retinal Vein Occlusion (SCORE) study report 6. Arch Ophthalmol. 2009;127:1115–28.PubMedCrossRefGoogle Scholar
  43. 43.
    Ip MS, Scott IU, VanVeldhuisen PC, et al. A randomized trial comparing the efficacy and safety of intravitreal triamcinolone with observation to treat vision loss associated with macular edema secondary to central retinal vein occlusion: the Standard Care vs Corticosteroid for Retinal Vein Occlusion (SCORE) study report 5. Arch Ophthalmol. 2009;127:1101–14.PubMedCrossRefGoogle Scholar
  44. 44.
    Haller JA, Bandello F, Belfort R Jr, et al. Dexamethasone intravitreal implant in patients with macular edema related to branch or central retinal vein occlusion: twelve month study results. Ophthalmology. 2011;118:2453–60.PubMedCrossRefGoogle Scholar
  45. 45.
    The Central Vein Occlusion Study Group M report. Evaluation of grid pattern photocoagulation for macular edema in central retinal vein occlusion. Ophthalmology. 1995;102(10):1425–33.Google Scholar
  46. 46.
    The Central Vein Occlusion Study Group N report. A randomized clinical trial of early panretinal photocoagulation for ischemic central vein occlusion. Ophthalmology. 1995;102:1434–44.Google Scholar
  47. 47.
    Stellungnahme der Deutschen Ophthalmologischen Gesellschaft, der Retinologischen Gesellschaft und des Berufsverbandes der Augenärzte Deutschlands zur Therapie des Makulaödems beim retinalen Venenverschluss. 2010. http://www.dog.org. Zugriffsdaten: 29.11.2011Google Scholar

Copyright information

© Springer-Verlag Wien 2012

Authors and Affiliations

  • Martin Weger
    • 1
    Email author
  • Stefan Egger
    • 2
  • für die Netzhautkommission
  1. 1.Medizinische Universität GrazGrazAustria
  2. 2.Universitätsklinik für AugenheilkundeOptometrie der Paracelsus Medizinischen Privatuniversität SalzburgSalzburgÖsterreich

Personalised recommendations