Advertisement

Spektrum der Augenheilkunde

, Volume 26, Issue 4, pp 197–201 | Cite as

Limited vitrectomy with intravitreal bevacizumab, rt-PA and gas for submacular hemorrhage due to age-related macular degeneration

  • Lisa TarmannEmail author
  • Andreas Wedrich
  • Anton Haas
  • Andrea Berghold
  • Adelheid Kresse
  • Christian Vajda
  • Richard Maier
original article

Summary

Purpose

To investigate the safety and efficacy of limited vitrectomy with intravitreal bevacizumab, recombinant tissue plasminogen activator (rt-PA) and gas for displacement of submacular hemorrhage due to exudative age-related macular degeneration (AMD).

Methods

In this retrospective pilot study 11 eyes of 11 patients with submacular hemorrhage secondary to AMD were analyzed.

A limited 23 g-one-port pars plana vitrectomy was performed and 50 μg rt-PA, 1.25 mg bevacizumab and about 1.5 mL of 100 % sulfur hexafluoride (SF6) were injected into the vitreous. The best and the final visual acuity and blood displacement from the fovea were evaluated postoperatively.

Results

The best postoperative visual acuity (VA) was obtained at a median of 1 month after surgery (range 0.5–6 months) and demonstrated significantly better results than baseline VA for a short period of time (p = 0.04). No statistically significant improvement (p = 0.11) of the final visual acuity at a median of 3 months (range 0.5–6 months) compared to preoperative was found. Final visual acuity improved in 7 eyes, remained stable in 2 eyes and worsened in 2 eyes. Total pneumatic displacement of the submacular hemorrhage was obtained in 5 (46 %) eyes, partial displacement was shown in 2 (18 %) eyes. There was no displacement of the subretinal hemorrhage in 4 (36 %) eyes.

Conclusion

This surgical procedure seems to have no advantage over intravitreous injection of rt-PA and gas with or without complete vitrectomy concerning displacement rate of submacular hemorrhage and postoperative visual acuity.

Keywords

Submacular hemorrhage Age-related macular degeneration Limited vitrectomy Bevacizumab rt-PA 

Partielle Vitrektomie mit intravitrealem Bevacizumab, rt-PA und Gas für die Behandlung submakulärer Blutungen bei altersbedingter Makuladegeneration

Zusammenfassung

Zielsetzung

In dieser Pilotstudie werden Wirksamkeit und Komplikationsrate einer partiellen Vitrektomie mit intravitrealem Bevacizumab, gewebespezifischem rekombinantem Plasminogenaktivator (rt-PA) und Gas für die Verdrängung submakulärer Blutungen bei feuchter altersbedingter Makuladegeneration (AMD) evaluiert.

Methoden

In dieser retrospektiven Pilotstudie wurden Daten von 11 Augen von 11 PatientInnen mit submakulärer Blutung nach AMD untersucht.

Es wurde eine partielle 23 g-one-port pars plana Vitrektomie mit intravitrealer Injektion von 50 μg rt-PA, 1,25 mg Bevacizumab und 1,5 mL 100 % Schwefelhexafluorid (SF6) durchgeführt. Der Visusverlauf und die Verdrängung der Blutung aus der Fovea wurden postoperativ evaluiert.

Ergebnisse

Ein signifikant besserer postoperativer Visus wurde nach einem Median von einem Monat (0,5–6 Monate) nach Behandlung für eine kurze Zeitspanne erreicht. Am Ende der Beobachtungszeit mit einem Median von 3 Monaten (0,5–6 Monate) konnte jedoch keine statistisch signifikante Verbesserung (p = 0,11) im Vergleich zu präoperativen Werten erzielt werden. Der Visus verbesserte sich bei 7 Augen, blieb bei 2 Augen stabil und verschlechterte sich bei 2 Augen. Bei 5 (46 %) Augen konnte die Blutung komplett und bei 2 (18 %) Augen partiell aus der Fovea verdrängt werden. Bei 4 (36 %) Augen konnte die subretinale Blutung nicht aus der Fovea verdrängt werden.

Schlussfolgerung

Dieses chirurgische Verfahren scheint keinen Vorteil gegenüber einer intravitrealen Injektion von rt-PA und Gas mit oder ohne einer kompletten Vitrektomie in Bezug auf die Verdrängung der submakulären Blutungen oder der postoperativen Verbesserung der Sehschärfe zu haben.

Schlüsselwörter

Submakuläre Blutung Altersbedingte Makuladegeneration Partielle Vitrektomie Bevacizumab rt-PA 

Notes

Conflict of interest

The authors declare that there is no actual or potential conflict of interest in relation to this article.

References

  1. 1.
    Avery RL, Fekrat S, Hawkins BS, et al. Natural history of subfoveal subretinal hemorrhage in age-related macular degeneration. Retina. 1996;16(3):183–9.PubMedCrossRefGoogle Scholar
  2. 2.
    Toth CA, Morse LS, Hjelmeland LM, et al. Fibrin directs early retinal damage after experimental subretinal hemorrhage. Arch Ophthalmol. 1991;109(5):723–9.PubMedCrossRefGoogle Scholar
  3. 3.
    Gillies A, Lahav M. Absorption of retinal and subretinal hemorrhages. Ann Ophthalmol. 1983;15(11):1068–74.PubMedGoogle Scholar
  4. 4.
    Scupola A, Coscas G, Soubrane G, et al. Natural history of macular subretinal hemorrhage in age-related macular degeneration. Ophthalmologica. 1999;213(2):97–102.PubMedCrossRefGoogle Scholar
  5. 5.
    Bennett SR, Folk JC, Blodi CF, et al. Factors prognostic of visual outcome in patients with subretinal hemorrhage. Am J Ophthalmol. 1990;109(1):33–7.PubMedGoogle Scholar
  6. 6.
    Guthoff R, Guthoff T, Meigen T, et al. Intravitreous injection of bevacizumab, tissue plasminogen activator, and gas in the treatment of submacular hemorrhage in age-related macular degeneration. Retina. 2011;31(1):36–40.Google Scholar
  7. 7.
    Krepler K, Kruger A, Tittl M, et al. Intravitreal injection of tissue plasminogen activator and gas in subretinal hemorrhage caused by age-related macular degeneration. Retina. 2000;20(3):251–6.PubMedCrossRefGoogle Scholar
  8. 8.
    Oshima Y, Ohji M, Tano Y. Pars plana vitrectomy with peripheral retinotomy after injection of preoperative intravitreal tissue plasminogen activator: a modified procedure to drain massive subretinal haemorrhage. Br J Ophthalmol. 2007;91(2):193–8.PubMedCrossRefGoogle Scholar
  9. 9.
    Hillenkamp J, Surguch V, Framme C, et al. Management of submacular hemorrhage with intravitreal versus subretinal injection of recombinant tissue plasminogen activator. Graefes Arch Clin Exp Ophthalmol. 2010;248(1):5–11.PubMedCrossRefGoogle Scholar
  10. 10.
    Hassan AS, Johnson MW, Schneiderman TE, et al. Management of submacular hemorrhage with intravitreous tissue plasminogen activator injection and pneumatic displacement. Ophthalmology. 1999;106(10):1900–6; discussion 1906–7.PubMedCrossRefGoogle Scholar
  11. 11.
    Hesse L, Kroll P. Successful treatment of acute subretinal hemorrhage in age-related macular degeneration by combined intravitreal injection of recombinant tissue plasminogen activator and gas. Adv Ther. 1997;14(5):275–80.PubMedGoogle Scholar
  12. 12.
    Eckardt C. Transconjunctival sutureless 23-gauge vitrectomy. Retina. 2005;25(2):208–11.PubMedCrossRefGoogle Scholar
  13. 13.
    Fujii GY, De Juan E Jr, Humayun MS, et al. Initial experience using the transconjunctival sutureless vitrectomy system for vitreoretinal surgery. Ophthalmology. 2002;109(10):1814–20.PubMedCrossRefGoogle Scholar
  14. 14.
    Haas A, Seidel G, Steinbrugger I, Maier R, Gasser-Steiner V, Wedrich A, Weger M. Twenty-three-gauge and 20-gauge vitrectomy in epiretinal membrane surgery. Retina. 2010; 30(1):112–6.PubMedCrossRefGoogle Scholar
  15. 15.
    Lange C, Feltgen N, Junker B, et al. Resolving the clinical acuity categories “hand motion” and “counting fingers” using the Freiburg Visual Acuity Test (FrACT). Graefes Arch Clin Exp Ophthalmol. 2009;247(1):137–42.PubMedCrossRefGoogle Scholar
  16. 16.
    Schulze SD, Hesse L. Tissue plasminogen activator plus gas injection in patients with subretinal hemorrhage caused by age-related macular degeneration: predictive variables for visual outcome. Graefes Arch Clin Exp Ophthalmol. 2002;240(9):717–20.PubMedCrossRefGoogle Scholar
  17. 17.
    Mozaffarieh M, Heinzl H, Sacu S, et al. In-patient management and treatment satisfaction after intravitreous plasminogen activator injection. Graefes Arch Clin Exp Ophthalmol. 2006;244(11):1421–8.PubMedCrossRefGoogle Scholar
  18. 18.
    Hesse L, Schmidt J, Kroll P. Management of acute submacular hemorrhage using recombinant tissue plasminogen activator and gas. Graefes Arch Clin Exp Ophthalmol. 1999;237(4):273–7.PubMedCrossRefGoogle Scholar
  19. 19.
    Handwerger BA, Blodi BA, Chandra SR, et al. Treatment of submacular hemorrhage with low-dose intravitreal tissue plasminogen activator injection and pneumatic displacement. Arch Ophthalmol. 2001;119(1):28–32.PubMedGoogle Scholar
  20. 20.
    Hattenbach LO, Klais C, Koch FH, et al. Intravitreous injection of tissue plasminogen activator and gas in the treatment of submacular hemorrhage under various conditions. Ophthalmology. 2001;108(8):1485–92.PubMedCrossRefGoogle Scholar
  21. 21.
    Meyer CH, Scholl HP, Eter N, et al. Combined treatment of acute subretinal haemorrhages with intravitreal recombined tissue plasminogen activator, expansile gas and bevacizumab: a retrospective pilot study. Acta Ophthalmol. 2008;86(5):490–4.PubMedCrossRefGoogle Scholar
  22. 22.
    Arias L, Mones J. Transconjunctival sutureless vitrectomy with tissue plasminogen activator, gas and intravitreal bevacizumab in the management of predominantly hemorrhagic age-related macular degeneration. Clin Ophthalmol. 2010;4:67–72.PubMedCrossRefGoogle Scholar
  23. 23.
    Auriol S, Mahieu L, Lequeux L, et al. Pars plana vitrectomy, subretinal injection of recombinant tissue plasminogen activator and fluid-gas exchange in the management of massive submacular hemorrhages secondary to age-related macular degeneration. J Fr Ophtalmol. 2010;33(2):84–91.PubMedCrossRefGoogle Scholar
  24. 24.
    Haupert CL, McCuen BW 2nd, Jaffe GJ, et al. Pars plana vitrectomy, subretinal injection of tissue plasminogen activator, and fluid-gas exchange for displacement of thick submacular hemorrhage in age-related macular degeneration. Am J Ophthalmol. 2001;131(2):208–15.PubMedCrossRefGoogle Scholar
  25. 25.
    Singh RP, Patel C, Sears JE. Management of subretinal macular haemorrhage by direct administration of tissue plasminogen activator. Br J Ophthalmol. 2006;90(4):429–31.PubMedCrossRefGoogle Scholar
  26. 26.
    Treumer F, Klatt C, Roider J, et al. Subretinal coapplication of recombinant tissue plasminogen activator and bevacizumab for neovascular age-related macular degeneration with submacular haemorrhage. Br J Ophthalmol. 2010;94(1):48–53.PubMedCrossRefGoogle Scholar
  27. 27.
    Olivier S, Chow DR, Packo KH, et al. Subretinal recombinant tissue plasminogen activator injection and pneumatic displacement of thick submacular hemorrhage in Age-Related macular degeneration. Ophthalmology. 2004;111(6):1201–8.PubMedCrossRefGoogle Scholar
  28. 28.
    Krebs I, Brannath W, Glittenberg C, et al. Posterior vitreomacular adhesion: a potential risk factor for exudative age-related macular degeneration? Am J Ophthalmol. 2007;144(5):741–6.Google Scholar
  29. 29.
    Verma D, Jalabi MW, Watts WG, et al. Evaluation of posturing in macular hole surgery. Eye (Lond). 2002;16(6):701–4.CrossRefGoogle Scholar
  30. 30.
    Lincoff H, Kreissig I, Stopa M, et al. A 40 degrees gaze down position for pneumatic displacement of submacular hemorrhage: clinical application and results. Retina. 2008;28(1):56–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Stopa M, Lincoff A, Lincoff H. Analysis of forces acting upon submacular hemorrhage in pneumatic displacement. Retina. 2007;27(3):370–4.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2012

Authors and Affiliations

  • Lisa Tarmann
    • 1
    Email author
  • Andreas Wedrich
    • 1
  • Anton Haas
    • 1
  • Andrea Berghold
    • 2
  • Adelheid Kresse
    • 3
  • Christian Vajda
    • 4
  • Richard Maier
    • 1
  1. 1.Department of OphthalmologyMedical University of GrazGrazAustria
  2. 2.Institute for Medical Informatics, Statistics and DocumentationMedical University of GrazGrazAustria
  3. 3.Institute for Pathophysiology and ImmunologyMedical University of GrazGrazAustria
  4. 4.Medical University of GrazGrazAustria

Personalised recommendations