Advertisement

Spektrum der Augenheilkunde

, Volume 25, Issue 4, pp 262–268 | Cite as

24-Stunden-"Augendruck" Aufzeichnung mit Sensorkontaktlinse Triggerfish: von Euphorie zur Ernüchterung

  • C. Faschinger
  • G. Mossböck
  • C. Strohmaier
  • H. A. Reitsamer
Originalarbeit

Zusammenfassung

HINTERGRUND: Die ersten Anwendungen der Sensorkontaktlinse Triggerfish waren betreffend Sicherheit und Verträglichkeit gut. Diese spezielle Kontaktlinse misst 24 Stunden kontinuierlich und kabellos die Veränderungen der Hornhautkrümmung, die durch Schwankungen des Augeninnendruckes entstehen. Ziele unsere Studie waren (1) Messungen am enukleierten Menschenauge, bei denen der Augendruck stufenweise erhöht wurde und (2) Messungen bei Lageänderungen des Körpers/Kopfes. MATERIAL UND METHODE: (1) Nach Kanülierung des enukleierten Menschenauges und Anpassung der Sensorkontaktlinse wurde der Augendruck stufenweise erhöht und die Signale von der Kontaktlinse gemessen. (2) Nach Einsetzen der Sensorkontaktlinse wurde das Messprofil aufgezeichnet und beim Partnerauge in vertikaler, horizontaler und Kopf-nach-unten-Position der Augendruck applanatorisch gemessen. RESULTATE: (1) Mit der Triggerfish-Kontaktlinse ließen sich keine korrespondierenden Messprofile entsprechend den Drucksteigerungen ableiten. (2) Auch bei Lageänderungen, die zu Änderungen des applanatorisch gemessenen Augendruckes führten, fanden sich – auch bei Wiederholung des Versuches – keine entsprechenden Triggerfish-Profile. SCHLUSSFOLGERUNG: Trotz perfekter Laborbedingungen konnten keine entsprechenden Triggerfish-Profile bei schrittweiser Druckerhöhung am Leichenauge bzw. bei Lageveränderungen des menschlichen Auges abgeleitet werden. Warum dies so war sollte Ziel weiterer Untersuchungen sein, um ein seriöses Urteil über den Triggerfish abgeben zu können.

Schlüsselwörter

Sensorkontaktlinse Augeninnendruck Lageveränderungen des Körpers 

24-hour "intraocular pressure" measurement with sensory contact lens Triggerfish: from euphoria to disillusion

Summary

BACKGROUND: The first trials with the sensory contact lens Triggerfish checking the safety and tolerability in human eyes were satisfactory. This specific contact lens measures the changes of the peripheral corneal curvature due to changes of the intraocular pressure within 24 hours continuously and wirelessly. The aims of our study were (1) to perform these measurements in enucleated human eyes with stepwise change of the intraocular pressure and (2) in a healthy human eye when changing the body positions. MATERIAL AND METHODS: (1) After canulation of the enucleated human eye and after the placement of the Triggerfish contact lens the intraocular pressure was increased stepwise and monitored as well as the data from the contact lens. (2) After a period of adaption of the Triggerfish contact lens in a vertical body position the body was brought in a supine and head-down position. At any time of change of the position the intraocular pressure of the second eye was checked by a handhold applanation tonometer. RESULTS: (1) The Triggerfish did not reveal correlating results to the stepwise increase of the intraocular pressure in an enucleated human eye. (2) The Triggerfish did not reveal corresponding results to the intraocular pressure values measured by applanation tonometer of the second eye after changing body positions, even not when the experiment was repeated. CONCLUSIONS: Despite perfect laboratory conditions reproducible measurements of changes of the corneal curvature induced by changes of the intraocular pressure could not be obtained. Changes of body/head positions would expect to produce changes in the intraocular pressure and therefore changes in the profile of the Triggerfish, but these anticipated changes did not correspond to the values gained by applanation tonometry. The reasons why are yet to be examined to judge the Triggerfish reliably.

Keywords

Sensory contact lens Intraocular pressure Posture 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Leonardi M, Leuenberger P, Bertrand D, Bertsch A, Renaud P. First steps toward noninvasive intraocular pressure monitoring with a sensing contact lens. Invest Ophthalmol Vis Res. 2004;45:3113–7CrossRefGoogle Scholar
  2. Leonardi M, Pitchon EM, Bertsch A, Renaud P, Mermoud A. Wireless contact lens sensor for intraocular pressure monitoring: assessment on enucleated pig eyes. Acta Ophthalmol. 2009;87:433–7PubMedCrossRefGoogle Scholar
  3. De Smedt S, Mermoud A, Schnyder C. 24-hour intraocular pressure fluctuation monitoring using an ocular telemetry sensor. Tolerability and functionality in healthy subjects. J Glaucoma. 2011; May 19 [Epub ahead of print]Google Scholar
  4. Faschinger C, Mossböck G. Kontinuierliche 24-h-Aufzeichnung von Augendruckschwankungen mittels drahtlosem Kontaktlinsensensor Triggerfish. Erste Ergebnisse an Patienten. Ophthalmologe. 2010;107:918–22PubMedCrossRefGoogle Scholar
  5. Singh K, Shrivastava A. Intraocular pressure fluctuations: how much do they matter? Curr Opin Ophthalmol. 2009;20:84–7PubMedCrossRefGoogle Scholar
  6. Mosaed S, Liu JHK, Weinreb RN. Correlation between office and peak nocturnal intraocular pressures in healthy subjects and glaucoma patients. Am J Ophthalmol. 2005;139:320–4PubMedCrossRefGoogle Scholar
  7. Fogagnolo P, Orzalesi N, Ferraras A, Rossetti L. The circadian curve of intraocular pressure: can we estimate its characteristics during office hours? Invest Ophthalmol Vis Sci. 2009;50:2209–15PubMedCrossRefGoogle Scholar
  8. Liu JHK, Kripke DF, Hoffman RE, Twa MD, Loving RT, Rex KM, Gupta N, Weinreb RN. Nocturnal elevation of intraocular pressure in young adults. Invest Ophthalmol Vis Sci. 1998;39:2707-2712PubMedGoogle Scholar
  9. Liu JHK, Kripke DF, Twa MD, Hoffman RE, Mansberger SL, Rex KM, Girkin CA, Weinreb RN. Twenty-four-hour pattern of intraocular pressure in the aging population. Invest Ophthalmol Vis Sci. 1999;40:2912– 7PubMedGoogle Scholar
  10. Liu JHK, Zhang X, Kripke DF, Weinreb RN. Twenty-four-hour intraocular pressure pattern associated with early glaucomatous changes. Invest Ophthalmol Vis Sci. 2003;44:1586–90PubMedCrossRefGoogle Scholar
  11. Quaranta L, Konstas AG, Rossetti L, et al. Untreated 24-h intraocular pressures measured with Goldmann applanation tonometry vs nighttime supine pressures with Perkins applanation tonometry. Eye (Lond) 2009; 1–7, doi: 10.1038/eye.2009.300
  12. Hara T, Hara T, Tsuru T. Increase of peak intraocular pressure during sleep in reproduced diurnal changes by posture. Arch Ophthalmol. 2006;124:165–8PubMedCrossRefGoogle Scholar
  13. Barkana Y, Anis S, Liebmann J, Tello C, Ritch R. Clinical utility of intraocular pressure monitoring outside of normal office hours in patients with glaucoma. Arch Ophthalmol. 2006;124:793–7PubMedCrossRefGoogle Scholar
  14. Liu JH, Bouligny RP, Kripke DF, Weinreb RN. Nocturnal evaluation of intraocular pressure is detectable in the sitting position. Invest Ophthalmol Vis Sci. 2003;44:4439–42PubMedCrossRefGoogle Scholar
  15. Krieglstein GK, Waller WK, Leydhecker W. The vascular basis of the positional influence of the intraocular pressure. Graefes Arch Clin Exp Ophthalmol. 1978;206:99–106CrossRefGoogle Scholar
  16. Schmidtmann G, Jahnke S, Seidel EJ, Sickenberger W, Grein HJ. Intraocular pressure fluctuations in professional brass and woodwind musicians during common playing conditions. Graefes Arch Clin Exp Ophthalmol. 2011 Jan 14. [Epub ahead of print]Google Scholar
  17. Friberg TR, Sanborn G, Weinreb RN. Intraocular and episcleral venous pressure increase during inverted posture. Am J Ophthalmol. 1987;103:523–6PubMedGoogle Scholar
  18. Sit AJ. Continuous monitoring of intraocular pressure. Rationale and progress toward a clinical device. J Glaucoma. 2009;18:272–9PubMedCrossRefGoogle Scholar
  19. Jonas JB, Budde W, Stroux A, Oberacher-Velten IM, Jünemann A. Single intraocular pressure maesurements and diurnal intraocular pressure profiles. Am J Ophthalmol. 2005;139:1136–7PubMedCrossRefGoogle Scholar
  20. Realini T, Weinreb N, Wisniewski S. Short-term repeatability of diurnal intraocular pressure patterns in glaucomatous individuals. Ophthalmology. 2011;118:47–51PubMedCrossRefGoogle Scholar
  21. Draeger J, Hechler B, Levedag S, Wirt H. Über die automatische Messung des Augeninnendruckes mit einem elektronischen Sensor-Tonometer. Klin Monatsbl Augenheilkd. 1987;190:539–41PubMedCrossRefGoogle Scholar
  22. Draeger J, Tost F, Großjohann R, Jürgens C. Die Tagesvarianz des intraokularen Drucks. Z prakt Augenheilkd. 2010;31:441–4Google Scholar
  23. Antal S, Jürgens C, Großjohann R, Tost FH. Tagesschwankungen des okulären Perfusionsdrucks im Telemonitoring bei primärem Offenwinkelglaukom. Klin Monatsbl Augenheilkd. 2008;225:168–75Google Scholar
  24. Goldberg I, Clement CI. The water drinking test. Editorial. Am J Ophthalmol. 2010;150:447–9PubMedCrossRefGoogle Scholar
  25. Asrani S, Chatterjee A, Wallace DK, Santiago-Turia C, Stinnett S. Evaluation of the Icare rebound tonometer as a home intraocular pressure monitoring device. J Glaucoma 2010;20:74–9CrossRefGoogle Scholar
  26. Sit AJ. Circadian variation of aqueous dynamics in young healthy adults. IOVS 2008;49:1473–9Google Scholar
  27. Twa MD, Roberts CJ, Karol HJ, Mahmoud AM, Weber PA, Small RH. Evaluation of a contact lens-embedded sensor for intraocular pressure measurement. J Glaucoma. 2010;19:382–90PubMedCrossRefGoogle Scholar
  28. Hediger A, Kniestedt C, Zweifel S, Knecht P, Funk J, Kanngiesser H. Kontinuierliche Augeninnendruckmessung. Erste Ergebnisse einer drucksensitiven Kontaktlinse. Ophthalmologe. 2009;106:1111–5PubMedCrossRefGoogle Scholar
  29. Hayrey SS, Zimmerman MB, Podhajsky P, Alward WLM. Nocturnal arterial hypotension and its role in optic nerve head and ocular ischemic disorders. Am J Ophthalmol. 1994;117:603–24Google Scholar
  30. Buys YM, Alasbali T, Jin YP, Smith M, Gouws P, Geffen N, Flanagan JG, Shapiro CM, Trope GE. Effect of sleeping in a head-up position on intraocular pressure in patients with glaucoma. Ophthalmology. 2010;117:1348–51PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • C. Faschinger
    • 1
  • G. Mossböck
    • 1
  • C. Strohmaier
    • 2
  • H. A. Reitsamer
    • 2
  1. 1.Universitäts-Augenklinik der Medizinischen Universität GrazAustria
  2. 2.Universitäts-Augenklinik SalzburgUniversitätsklinikum Salzburg/PMUAustria

Personalised recommendations