Spektrum der Augenheilkunde

, Volume 21, Issue 1, pp 17–28 | Cite as

Ultrahigh-Resolution Combined Coronal Optical Coherence Tomography Confocal Scanning Ophthalmoscope (OCT/SLO): A pilot study

  • R. B. Rosen
  • M. E. J. van Velthoven
  • P. M. T. Garcia
  • R. G. Cucu
  • M. D. de Smet
  • T. O. Muldoon
  • A. Gh. Podoleanu
Originalarbeiten

Summary

OBJECTIVE: To evaluate clinical images from a prototype ultrahigh resolution (UHR) combined coronal optical coherence tomography/confocal scanning ophthalmoscope (OCT/SLO) and to compare them to standard-resolution OCT/SLO images on the same patients. DESIGN: Cross-sectional pilot-study. PARTICIPANTS: Sixty-six eyes of 42 patients with various macular pathologies, such as age-related macular degeneration, macular edema, macular hole, central serous retinopathy, epiretinal membrane and posterior vitreous traction syndrome. METHODS: Each subject was first scanned with a standard-resolution OCT/SLO that has an axial resolution of ∼10 micron. Immediately following, patients were scanned with the prototype UHR OCT/SLO device. The UHR system employs a compact super luminescent diode (SLD) with a 150 nm bandwidth centered at 890 nm, which allows imaging of the retina with an axial resolution of 3 microns. Both coronal and longitudinal OCT scans were acquired with each system, and compared side-by-side. Scan quality was assessed for the observer's ability to visualize the vitreo-retinal interface and retinal layers – in particular of the outer retina/RPE/choroidal interface, increased discrimination of pathological changes, and better signal intensity. MAIN OUTCOME MEASURES: Ultrahigh and standard-resolution coronal and longitudinal OCT/SLO images of macular pathologies. RESULTS: In the side-by-side comparison with the commercial standard-resolution OCT/SLO images, the scans in the Ultrahigh resolution OCT/SLO images were superior in 85% of cases. Relatively poor quality images were attributed to lower signal-to-noise ratio, limited focusing, or media opacities. Several images that had a better signal intensity in the standard-resolution OCT/SLO system were found to show more retinal detail in the UHR system. In general, intraretinal layers in the UHR OCT/SLO images were better delineated in both coronal and longitudinal scans. Enhanced details were also seen in the outer retina/RPE/choroidal complex. The UHR OCT/SLO system produced better definition of morphological changes in several macular pathologies. CONCLUSIONS: Broadband SLD-based UHR OCT/SLO offers a compact, efficient, and economic enhancement to the currently available clinical OCT imaging systems. UHR OCT/SLO imaging enhanced the quality of the OCT C-scans, facilitated appreciation of vitreo-retinal pathologies, and improved sensitivity to small changes in the retina, and the outer retina/RPE/choroidal interface.

Key words

OCT ophthalmoscope OCT/SLO Ultrahigh resolution OCT Coronal OCT 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Huang D, Swanson EA, Lin CP, et al (1991) Optical coherence tomography. Science 254: 1178–1181PubMedCrossRefGoogle Scholar
  2. Podoleanu AG, Dobre GM, Seeger M, et al (1998) Low coherence interferometry for en-face imaging of the retina. Lasers and Light 8: 187–192Google Scholar
  3. Hee MR, Izatt JA, Swanson EA, et al (1995) Optical coherence tomography of the human retina. Arch Ophthalmol 113: 325–332PubMedGoogle Scholar
  4. Schuman JS, Puliafito CA, Fujimoto JG (2004) Optical Coherence Tomography of Ocular Diseases (2nd edn). Thorofare (USA): SLACK Inc.Google Scholar
  5. Drexler W, Morgner U, Ghanta RK, et al (2001) Ultrahigh-resolution ophthalmic optical coherence tomography. Nature Medicine 7: 502–507PubMedCrossRefGoogle Scholar
  6. Drexler W, Sattmann H, Hermann B, et al (2003) Enhanced visualization of macular pathology with the use of ultrahigh-resolution optical coherence tomography. Arch Ophthalmol 121: 695–706PubMedCrossRefGoogle Scholar
  7. Nassif N, Cense B, Park BH, et al (2004) In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography. Opt Lett 29: 480–482PubMedCrossRefGoogle Scholar
  8. Leitgeb RA, Drexler W, Unterhuber A, et al (2004) Ultrahigh resolution Fourier domain optical coherence tomography. Optics Express 12: 2156–2165CrossRefPubMedGoogle Scholar
  9. Schmidt-Erfurth U, Leitgeb RA, Michels S, et al (2005) Three-dimensional ultrahigh-resolution optical coherence tomography of macular diseases. Invest Ophthalmol Vis Sci 46: 3393–3402PubMedCrossRefGoogle Scholar
  10. Podoleanu AG, Seeger M, Dobre GM, et al (1998) Transversal and longitudinal images from the retina of the living eye using low coherence reflectometry. J Biomed Opt 3: 12–20CrossRefGoogle Scholar
  11. Podoleanu AG, Dobre GM, Cucu RG, et al (2004) Combined multiplanar optical coherence tomography and confocal scanning ophthalmoscopy. J Biomed Opt 9: 86–93PubMedCrossRefGoogle Scholar
  12. Hitzenberger CK, Trost P, Lo P, Zhou Q (2003) Three-dimensional imaging of the human retina by high-speed optical coherence tomography. Opt Express 11: 2753–2761CrossRefPubMedGoogle Scholar
  13. Vabre L, Dubois A, Boccara AC (2002) Thermal-light full-field optical coherence tomography. Opt Lett 27: 530–532PubMedGoogle Scholar
  14. van Velthoven ME, Verbraak FD, Yannuzzi LA, et al (2006) Imaging the Retina by en-face Optical Coherence Tomography. Retina 26: 129–136PubMedCrossRefGoogle Scholar
  15. Unterhuber A, Povazay B, Bizheva K, et al (2004) Advances in broad bandwidth light sources for ultrahigh resolution optical coherence tomography. Phys Med Biol 49: 1235–1246PubMedCrossRefGoogle Scholar
  16. Ko TH, Adler DC, Fujimoto JG, et al (2004) Ultrahigh resolution optical coherence tomography imaging with a broadband superluminescent diode light source. Optics Express 12: 2112–2119CrossRefPubMedGoogle Scholar
  17. American National Standards Institute. American National Standard for Safe Use of Lasers. ANSI, Z 136-I. 2000. New York. Ref Type: GenericGoogle Scholar
  18. Sander B, Larsen M, Thrane L, et al (2005) Enhanced optical coherence tomography imaging by multiple scan averaging. Br J Ophthalmol 89: 207–212PubMedCrossRefGoogle Scholar
  19. Paunescu LA, Ko TH, Duker JS, et al (2006) Idiopathic juxtafoveal retinal telangiectasis: new findings by ultrahigh-resolution optical coherence tomography. Ophthalmology 113: 48–57PubMedCrossRefGoogle Scholar
  20. Ergun E, Hermann B, Wirtitsch M, et al (2005) Assessment of central visual function in Stargardt's disease/fundus flavimaculatus with ultrahigh-resolution optical coherence tomography. Invest Ophthalmol Vis Sci 46: 310–316PubMedCrossRefGoogle Scholar
  21. Ko TH, Fujimoto JG, Duker JS, et al (2004) Comparison of ultrahigh- and standard-resolution optical coherence tomography for imaging macular hole pathology and repair. Ophthalmology 111: 2033–2043PubMedCrossRefGoogle Scholar
  22. Ko TH, Fujimoto JG, Schuman JS, et al (2005) Comparison of ultrahigh- and standard-resolution optical coherence tomography for imaging macular pathology. Ophthalmology 112: 1922PubMedCrossRefGoogle Scholar
  23. Wirtitsch MG, Ergun E, Hermann B, et al (2005) Ultrahigh resolution optical coherence tomography in macular dystrophy. Am J Ophthalmol 140: 976–983PubMedCrossRefGoogle Scholar
  24. Witkin AJ, Duker JS, Ko TH, et al (2005) Ultrahigh resolution optical coherence tomography of birdshot retinochoroidopathy. Br J Ophthalmol 89: 1660–1661PubMedCrossRefGoogle Scholar
  25. van Velthoven ME, de Vos K, Verbraak FD, et al (2005) Overlay of conventional angiographic and en-face OCT images enhances their interpretation. BMC Ophthalmol 5: 12PubMedCrossRefGoogle Scholar
  26. van Velthoven ME, Verbraak FD, Garcia PM, et al (2005) Evaluation of central serous retinopathy with en face optical coherence tomography. Br J Ophthalmol 89: 1483–1488PubMedCrossRefGoogle Scholar
  27. Pircher M, Gotzinger E, Leitgeb R, et al (2004) Imaging of polarization properties of human retina in vivo with phase resolved transversal PS-OCT. Optics Express 12: 5940–5951CrossRefPubMedGoogle Scholar
  28. Paunescu LA, Schuman JS, Price LL, et al (2004) Reproducibility of Nerve Fiber Thickness, Macular Thickness, and Optic Nerve Head Measurements Using StratusOCT. Invest Ophthalmol Vis Sci 45: 1716–1724PubMedCrossRefGoogle Scholar
  29. Gurses-Ozden R, Teng C, Vessani R, et al (2004) Macular and Retinal Nerve Fiber Layer Thickness Measurement Reproducibility Using Optical Coherence Tomography (OCT-3). J Glaucoma 13: 238–244PubMedCrossRefGoogle Scholar
  30. Hee MR (2005) Artifacts in optical coherence tomography topographic maps. Am J Ophthalmol 139: 154–155PubMedCrossRefGoogle Scholar
  31. Cucu RG, Podoleanu AG, Rogers JA, Pedro J, Rosen RB (2006) Combined confocal/en face T-scan-based ultrahigh-resolution optical coherence tomography in vivo retinal imaging. Opt Lett 31 (11): 1684–1686PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • R. B. Rosen
    • 2
  • M. E. J. van Velthoven
    • 1
    • 2
  • P. M. T. Garcia
    • 2
  • R. G. Cucu
    • 3
  • M. D. de Smet
    • 1
  • T. O. Muldoon
    • 2
  • A. Gh. Podoleanu
    • 3
  1. 1.Department of OphthalmologyAcademic Medical CenterAmsterdamThe Netherlands
  2. 2.Advanced Retinal Imaging LaboratoryNew York Eye and Ear InfirmaryNew YorkUSA
  3. 3.Applied Optics GroupUniversity of KentCanterburyUK

Personalised recommendations