Journal of Economics

, Volume 119, Issue 1, pp 65–90 | Cite as

Congestion in production correspondences

  • Walter Briec
  • Kristiaan Kerstens
  • Ignace Van de Woestyne


This contribution aims to detect and measure more severe forms of congestion than the ones that could hitherto be evaluated in axiomatic production theory. To this end, we define a new S-disposal axiom, a kind of limited strong disposability. This S-disposal assumption leads to a duality result between a general input directional distance function and the cost function that is weaker than the ones established in the literature. Finally, we indicate how finite data sets can or cannot be rationalized by a minimal technology compatible with S-disposal, thereby generalizing the nonparametric weak axiom of cost minimization test.


Distance function Cost function Duality Congestion WACM 

JEL Classification

C61 D24 

Supplementary material

712_2016_484_MOESM1_ESM.pdf (422 kb)
Supplementary material 1 (pdf 422 KB)


  1. Arrow K, Barankin E, Blackwell D (1953) Admissible points of convex sets. In: Kuhn H, Tucker A (eds) Contributions to the theory of games, vol II. Princeton University Press, Princeton, pp 87–91Google Scholar
  2. Barnett W (2002) Tastes and technology: curvature is not sufficient for regularity. J Econometr 108(1):199–202CrossRefGoogle Scholar
  3. Blow L, Browning M, Crawford I (2008) Revealed preference analysis of characteristics models. Rev Econ Stud 75(2):371–389CrossRefGoogle Scholar
  4. Blundell R (2005) How revealing is revealed preference? J Eur Econ Assoc 3(2–3):211–235CrossRefGoogle Scholar
  5. Briec W, Kerstens K, Vanden Eeckaut P (2004) Non-convex technologies and cost functions: definitions, duality and nonparametric tests of convexity. J Econ 81(2):155–192CrossRefGoogle Scholar
  6. Chambers R, Chung Y, Färe R (1996) Benefit and distance functions. J Econ Theory 70(2):407–419CrossRefGoogle Scholar
  7. Chavas J-P, Briec W (2012) On economic efficiency under non-convexity. Econ Theory 50(3):671–701CrossRefGoogle Scholar
  8. Chavas J-P, Kim K (2007) Measurement and sources of economies of scope: a primal approach. J Inst Theoret Econ 163(3):411–427CrossRefGoogle Scholar
  9. Coggins J, Swinton J (1996) The price of pollution: a dual approach to valuing SO\(_{2}\) allowances. J Environ Econ Manag 30(1):58–72CrossRefGoogle Scholar
  10. Dasgupta P, Mähler K-G (2003) The economics of non-convex ecosystems: introduction. Environ Res Econ 26(4):499–525CrossRefGoogle Scholar
  11. Duranton G, Turner M (2011) The fundamental law of road congestion: evidence from US cities. Am Econ Rev 101(6):2616–2652CrossRefGoogle Scholar
  12. Färe R, Grosskopf S (1983) Measuring congestion in production. J Econ 43(3):257–271CrossRefGoogle Scholar
  13. Färe R, Grosskopf S (2000) Decomposing technical efficiency with care. Manag Sci 46(1):167–168CrossRefGoogle Scholar
  14. Färe R, Jansson L (1976) Joint inputs and the law of diminishing returns. Zeitschrift für Nationalökonomie 36(3–4):407–416Google Scholar
  15. Färe R, Svensson L (1980) Congestion of production factors. Econometrica 48(7):1745–1753CrossRefGoogle Scholar
  16. Ferguson C (1969) The neoclassical theory of production and distribution. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  17. First Z, Hackman S, Passy U (1993) Efficiency estimation and duality theory for nonconvex technologies. J Math Econ 22(3):295–307CrossRefGoogle Scholar
  18. Fuss M, McFadden D, Mundlak Y (1978) A survey of functional forms in the economic analysis of production. In: Fuss M, McFadden D (eds) Production economics: a dual approach to theory and applications, vol 1. North-Holland, Amsterdam, pp 219–268Google Scholar
  19. Hackman S (2008) Production economics: integrating the microeconomic and engineering perspectives. Springer, BerlinGoogle Scholar
  20. Henderson D, Russell R (2005) Human capital and convergence: a production-frontier approach. Int Econ Rev 46(4):1167–1205CrossRefGoogle Scholar
  21. Jacobsen S (1970) Production correspondences. Econometrica 38(5):754–771CrossRefGoogle Scholar
  22. Kuosmanen T (2003) Duality theory of non-convex technologies. J Prod Anal 20(3):273–304CrossRefGoogle Scholar
  23. Kuosmanen T (2005) Weak disposability in nonparametric production analysis with undesirable outputs. Am J Agric Econ 87(4):1077–1082CrossRefGoogle Scholar
  24. Lau L (1974) Comments. In: Intrilligator M, Kendrick D (eds) Frontiers of quantitative economics, vol II. North-Holland, Amsterdam, pp 176–199Google Scholar
  25. Luenberger D (1992) Benefit function and duality. J Math Econ 21(5):461–481CrossRefGoogle Scholar
  26. Luenberger D (1995) Microeconomic theory. McGraw-Hill, BostonGoogle Scholar
  27. McDonald J (1996) A problem with the decomposition of technical inefficiency into scale and congestion components. Manag Sci 42(3):473–474CrossRefGoogle Scholar
  28. McFadden D (1978) Cost, revenue and profit functions. In: Fuss M, McFadden D (eds) Production economics: a dual approach to theory and applications. North-Holland, Amsterdam, pp 3–109Google Scholar
  29. Murty S, Russell RR, Levkoff SB (2012) On modeling pollution-generating technologies. J Environ Econ Manag 64(1):117–135CrossRefGoogle Scholar
  30. Paris Q (2008) Law of the minimum. In: Chesworth W (ed) Encyclopedia of soil science. Springer, New York, pp 431–437CrossRefGoogle Scholar
  31. Scarf H (1986) Testing for optimality in the absence of convexity. In: Heller W, Starr R, Starrett S (eds) Social choice and public decision making: essays in honor of Kenneth J. Arrow, vol I. Cambridge University Press, Cambridge, pp 117–134Google Scholar
  32. Shephard R (1974) Indirect production functions. Verlag Anton Hain, Meisenheim am GlamGoogle Scholar
  33. Varian H (1984) The nonparametric approach to production analysis. Econometrica 52(3):579–597CrossRefGoogle Scholar
  34. Zhengfei G, Oude Lansink A (2003) Input disposability and efficiency in dutch arable farming. J Agric Econ 54(3):467–478CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  • Walter Briec
    • 1
  • Kristiaan Kerstens
    • 2
  • Ignace Van de Woestyne
    • 3
  1. 1.University of Perpignan, LAMPSPerpignanFrance
  2. 2.CNRS-LEM (UMR 9221)IESEG School of ManagementLilleFrance
  3. 3.KU LeuvenResearch unit MEESBrusselBelgium

Personalised recommendations