Advertisement

Journal of Economics

, Volume 105, Issue 1, pp 63–91 | Cite as

A new model of income distribution: the κ-generalized distribution

  • Fabio Clementi
  • Mauro Gallegati
  • Giorgio Kaniadakis
Article

Abstract

This paper proposes a three-parameter statistical model of income distribution by exploiting recent developments on the use of deformed exponential and logarithm functions as suggested by Kaniadakis (Phys A 296:405–425, 2001; Phys Rev E 66:056125, 2002; Phys Rev E 72:036108, 2005). Formulas for the shape, moments and standard tools for inequality measurement are given. The model is shown to fit remarkably well the personal income data for Great Britain, Germany and the United States in different years, and its empirical performance appears to be competitive with that of other existing distributions.

Keywords

Income distribution Income inequality κ-Generalized distribution 

JEL Classification

C16 D31 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnold BC, Laguna L (1977) On generalized Pareto distributions with applications to income data. Iowa State University Press, AmesGoogle Scholar
  2. Atkinson AB (1970) On the measurement of inequality. J Econ Theory 2: 244–263CrossRefGoogle Scholar
  3. Bach S, Corneo G, Steiner V (2009) From bottom to top: the entire income distribution in Germany, 1992–2003. Rev Income Wealth 55: 303–330CrossRefGoogle Scholar
  4. Bandyopadhyay S, Cowell FA, Flachaire E (2009) Goodness-of-Fit: an Economic Approach. STICERD–Distributional Analysis Research Programme Papers 101, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE. http://sticerd.lse.ac.uk/dps/darp/darp101.pdf
  5. Burkhauser RV, Butrica BA, Daly MC, Lillard DR (2001) The cross-national equivalent file: a product of cross-national research. In: Becker I, Ott N, Rolf G (eds) Soziale sicherung in einer dynamischen gesellschaft. Festschrift für Richard Hauser zum 65 (Social insurance in a dynamic society. Papers in honor of the 65th birthday of Richard Hauser). Geburtstag Campus, Frankfurt, New York, pp 354–376Google Scholar
  6. Champernowne DG (1953) A model of income distribution. Econ J 63: 318–351CrossRefGoogle Scholar
  7. Chernobai A, Rachev S, Fabozzi F (2005) Composite goodness-of-fit tests for left-truncated loss samples. Technical report, Department of Statistics and Applied Probability, University of California Santa Barbara. http://www.pstat.ucsb.edu/research/papers/KSmissing20050604-JFE.pdf
  8. Clementi F, Gallegati M, Kaniadakis G (2010) A model of personal income distribution with application to Italian data. Empir Econ 39: 559–591CrossRefGoogle Scholar
  9. Cowell FA (1980) Generalized entropy and the measurement of distributional change. Europ Econ Rev 13: 147–159CrossRefGoogle Scholar
  10. Cowell FA (1980) On the structure of additive inequality measures. Rev Econ Stud 47: 521–531CrossRefGoogle Scholar
  11. Cowell FA (1995) Measuring inequality. Prentice Hall/Harvester Wheatsheaf, Hemel HempsteadGoogle Scholar
  12. Cowell FA, Kuga K (1981) Additivity and the entropy concept: an axiomatic approach to inequality measurement. J Econ Theory 25: 131–143CrossRefGoogle Scholar
  13. Cowell FA, Kuga K (1981) Inequality measurement: An axiomatic approach. Eur Econ Rev 15: 287–305CrossRefGoogle Scholar
  14. Dagum C (1977) A new model of personal income distribution: specification and estimation. Econ Appl 30: 413–436Google Scholar
  15. Drăgulescu AA, Yakovenko VM (2001) Evidence for the exponential distribution of income in the USA. Eur Phys J B 20: 585–589CrossRefGoogle Scholar
  16. Efron B, Tibshirani RJ (1993) An introduction to the bootstrap. Chapman and Hall, New YorkGoogle Scholar
  17. Feenberg D, Coutts E (1993) An introduction to the TAXSIM model. J Policy Anal Manag 12: 189–194CrossRefGoogle Scholar
  18. Gibrat R (1931) Les inégalités économiques. Applications: Aux inégalités des richesses, à la concentration des entreprises, aux population des villes, aux statistiques des familles, etc., d’une loi nouvelle: La loi de l’effet proportionnel. Librairie du Recueil Sirey, ParisGoogle Scholar
  19. Gini C (1914) Sulla misura della concentrazione e della variabilità dei caratteri. Atti del Reale Istituto veneto di scienze, lettere ed arti 73:1201–1248 (English translation: On the measurement of concentration and variability of characters. Metron 63:3–38, 2005)Google Scholar
  20. Hagenaars AJM, De Vos K, Zaidi MA (1994) Poverty statistics in the late 1980s: research based on micro-data. Office for Official Publications of the European Communities, LuxembourgGoogle Scholar
  21. Haisken-DeNew JP, Frick JR (2005) Desktop Companion to the German Socio-Economic Panel (SOEP). German Institute for Economic Research (DIW). http://www.diw.de/documents/dokumentenarchiv/17/diw_01.c.38951.de/dtc.409713.pdf
  22. Jaynes ET (1957) Information theory and statistical mechanics. Phys Rev 106: 620–630CrossRefGoogle Scholar
  23. Jaynes ET (1957) Information theory and statistical mechanics. II. Phys Rev 108: 171–190CrossRefGoogle Scholar
  24. Jenkins SP (2009) Distributionally-sensitive inequality indices and the GB2 income distribution. Rev Income Wealth 55: 392–398CrossRefGoogle Scholar
  25. Kakwani N (1980) Income inequality and poverty: methods of estimation and policy applications. Oxford University Press, New YorkGoogle Scholar
  26. Kaniadakis G (2001) Non-linear kinetics underlying generalized statistics. Phys A 296: 405–425CrossRefGoogle Scholar
  27. Kaniadakis G (2002) Statistical mechanics in the context of special relativity. Phys Rev E 66: 056125CrossRefGoogle Scholar
  28. Kaniadakis G (2005) Statistical mechanics in the context of special relativity.II. Phys Rev E 72: 036108CrossRefGoogle Scholar
  29. Kapur JN (1989) Maximum entropy models in science and engineering. Wiley Eastern, New DelhiGoogle Scholar
  30. Kleiber C (1996) Dagum vs. Singh–Maddala income distributions. Econ Lett 53: 265–268CrossRefGoogle Scholar
  31. Kleiber C (1997) The existence of population inequality measures. Econ Lett 57: 39–44CrossRefGoogle Scholar
  32. Kleiber C (2008) A guide to the Dagum distributions. In: Chotikapanich D (eds) Modeling income distributions and Lorenz curves. Springer Science+Business Media, LLC, pp 97–117CrossRefGoogle Scholar
  33. Kleiber C, Kotz S (2003) Statistical size distributions in economics and actuarial sciences. Wiley, New YorkCrossRefGoogle Scholar
  34. Leipnik RB (1990) A maximum relative entropy principle for distribution of personal income with derivations of several known income distributions. Commun Stat Theory 19: 1003–1036CrossRefGoogle Scholar
  35. Lorenz MO (1905) Methods of measuring the concentration of wealth. Pub Am Stat Assn 9: 209–219CrossRefGoogle Scholar
  36. McDonald JB, Xu YJ (1995) A generalization of the beta distribution with applications. J Econ 66: 133–152 (Errata. J Econometrics 69:427–428)Google Scholar
  37. Nadarajah S, Kotz S (2006) \({{\texttt R}}\) programs for computing truncated distributions. J Stat Softw 16 (Code Snippet 2). http://www.jstatsoft.org/v16/c02/paper
  38. Ord JK, Patil GP, Taillie C (1981) The choice of a distribution to describe personal incomes. In: Taillie C, Patil GP, Baldessari BA (eds) Statistical distributions in scientific work, vol 6, D. Reidel Publishing Company, Dordrecht, pp 193–201Google Scholar
  39. R Development Core Team (2011) \({{\texttt R}}\): a Language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org
  40. Salem ABZ, Mount TD (1974) A convenient descriptive model of income distribution: The gamma density. Econometrica 42: 1115–1127CrossRefGoogle Scholar
  41. Shannon CE (1948) A mathematical theory of communication. Bell Sys Tech J 27:379–423; 623–657Google Scholar
  42. Singh SK, Maddala GS (1976) A function for size distribution of incomes. Econometrica 44: 963–970CrossRefGoogle Scholar
  43. Stephens MA (1986) Tests based on EDF statistics. In: D’ Agostino RB, Stephens MA (eds) Goodness-of-fit techniques. Marcel Dekker, New York, pp 97–193Google Scholar
  44. Takayasu H (1990) Fractals in the physical sciences. Manchester University Press, ManchesterGoogle Scholar
  45. Theil H (1967) Economics and information theory. North-Holland, AmsterdamGoogle Scholar
  46. Thode HC Jr (2002) Testing for normality. Marcel Dekker, New YorkCrossRefGoogle Scholar
  47. Vuong QH (1989) Likelihood ratio tests for model selection and non-nested hypotheses. Econometrica 57: 307–333CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Fabio Clementi
    • 1
  • Mauro Gallegati
    • 2
  • Giorgio Kaniadakis
    • 3
  1. 1.Department of Studies on Economic DevelopmentUniversity of MacerataMacerataItaly
  2. 2.Department of EconomicsPolytechnic University of MarcheAnconaItaly
  3. 3.Department of PhysicsPolytechnic University of TurinTorinoItaly

Personalised recommendations