Advertisement

Petrography, mineralogy and SIMS U-Pb geochronology of 1.9–1.8 Ga carbonatites and associated alkaline rocks of the Central-Aldan magnesiocarbonatite province (South Yakutia, Russia)

  • Ilya R. ProkopyevEmail author
  • Anna G. Doroshkevich
  • Sergey A. Sergeev
  • Richard E. Ernst
  • Jean D. Ponomarev
  • Anna A. Redina
  • Dmitry A. Chebotarev
  • Anna M. Nikolenko
  • Vladislav F. Dultsev
  • Tatyana N. Moroz
  • Alexey V. Minakov
Original Paper
  • 28 Downloads

Abstract

The N-S trending Central-Aldan magnesiocarbonatite province is located in the Aldan-Stanovoy shield (South Yakutia, Russia). Several apatite-dolomitic carbonatite occurrences were studied: Seligdar, Muostalaah, Ust-Chulman and Birikeen. Mineralogical and petrographic investigations indicate intense hydrothermal-metasomatic alteration and metamorphism, which are reflected in the evolution of the mineral parageneses. The primary minerals are fluorapatite, magnetite, ilmenite, dolomite, K-feldspar, phlogopite and accessory zircon, titanite, baddeleyite and thorite. The hydrothermal-metasomatic minerals are quartz, calcite and siderite aggregates with haematite, monazite-(Ce), xenotime-(Y), rutile-(Nb), barite-(Sr), anhydrite, ancylite-(Ce) and rare sulphide mineral phases. Alkaline rocks associated with the Muostalaah complex, were also studied. The following U-Pb ages have been obtained (Ma): 1930 ± 7 for Muostalaah alkaline basic rocks, 1906 ± 6 for Muostalaah carbonatites, and 1880 ± 13 and 1878 ± 17 for Seligdar and Ust-Chulman carbonatites, respectively.

Keywords

Magnesiocarbonatite Apatite Petrography Mineralogy Geochronology 

Notes

Acknowledgements

We are grateful to geologists from the Yakutskgeologiya mining company, especially to Viktor S. Minakov; to geologists Alexander A. Kravchenko and Alexey I. Ivanov from the Diamond and Precious Metal Geology Institute, Siberian Branch of the Russian Academy of Sciences (Yakutsk, Russia), and to the junior researcher Semen M. Krasnousov for the field work organization. The mineralogical and IR spectroscopy analyses were carried out at the Analytical Centre for multi-elemental and isotope research Siberian Branch of the Russian Academy of Sciences (Novosibirsk, Russia). Zircon dating was conducted on the SHRIMP-II at the Centre of Isotopic Research, A.P. Karpinsky Russian Geological Research Institute (St. Petersburg, Russia). We thank two anonymous reviewers, Associate Editor Qiuli Li and Editor-in-Chief Lutz Nasdala for their comments and recommendations, which led to significant improvement of the manuscript. The work is done on state assignment of Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences (Novosibirsk, Russia) and was also partially financially supported by the grant of President of the Russian Federation (МК-1113.2019.5) and the Russian Science Foundation (19-17-00019); geochronological investigations were also carried out according to the grant of the Government of the Russian Federation 14.Y26.31.0029 and were partially supported by the Russian Federation Mega-Grant 14.Y26.31.0012.

References

  1. Agashev AM, Pokhilenko NP, Takazawa E, McDonald JA, Vavilov MA (2008) Primary melting sequence of a deep (250 km) lithospheric mantle as recorded in the geochemistry of kimberlite–carbonatite assemblages, Snap Lake dyke system, Canada. Chem Geol 255(3):317–328Google Scholar
  2. Altmaier M, Neck V, Fanghanel T (2004) Solubility and colloid formation of Th(IV) in concentrated NaCl and MgCl2 solution. Radiochim Acta 92:537–543Google Scholar
  3. Ariskin AA, Danyushevsky LV, Konnikov EG, Maas R, Kostitsyn YA, McNeill A, Meffre S, Nikolaev GS, Kislov EV (2015) The Dovyren intrusive complex (Northern Baikal Region, Russia): isotope-geochemical markers of contamination of parental magmas and extreme enrichment of the source. Russ Geol Geophys 56(3):528–556Google Scholar
  4. Bailey DK (1989) Carbonate melt from the mantle in the volcanoes of South East Zambia. Nature 388:415–418Google Scholar
  5. Bailey DK, Kearns S (2011) Dolomitic volcanism in Zambia: Cr and K signatures and comparisons with other dolomitic melts from the mantle. In: Beccaluva L, Bianchini G, Wilson M (eds) Volcanism and evolution of the African lithosphere. Geol Soc Am Special Paper 8, pp 211–222Google Scholar
  6. Bell K, Rukhlov AS (2004) Carbonatites from the Kola Alkaline Province: origin, evolution and source characteristics. In: Wall F, Zaitsev AN (eds) Phoscorites and carbonatites from mantle to mine: the key example of the Kola Alkaline Province. Mineral Soc Series 10, pp 433–468Google Scholar
  7. Berezkin VI, Smelov AP, Zedgenizov AN, Kravchenko AA, Popov NV, Timofeev VF, Toropova LI (2015) The geological structure of the central part of the Aldan-Stanovoy shield and chemical compositions of the Early Precambrian rocks (South Yakutia). Novosibirsk (in Russian)Google Scholar
  8. Bogatikov OA, Kononova VA, Pervov VA, Zhuravlev DZ (1994) Petrogenesis of Mesozoic potassic magmatism of the Central Aldan: a Sr-Nd isotopic and geodynamic model. Int Geol Rev 36(7):629–644Google Scholar
  9. Borisenko AS, Borovikov AA, Vasyukova EA, Pavlova GG, Ragozin AL, Prokop’ev IR, Vladykin NV (2011) Oxidized magmatogene fluids: metal-bearing capacity and role in ore formation. Russ Geol Geophys 52(1):144–164Google Scholar
  10. Boyarko GY (1983) Geological and geochemical features of the Seligdar apatite deposits. Tomsk State University, Dissertation (in Russian)Google Scholar
  11. Boyarko GY (2005) Birikeen phosphate deposit. Proceedings of the Tomsk Polytechnic University 308(1):34–38 (in Russian)Google Scholar
  12. Bulakh AG, Zolotarev AA, Bobrova IP, Gulii VI, Vande-Kirkov YuV (1984) The main features of mineralogy and genesis of the Seligdar apatite deposit (Aldan crystalline shield). Zapiski vsesoyuznogo mineralogicheskogo obchestva, CXIII (4):398–410 (in Russian)Google Scholar
  13. Castor SB (2008) The Mountain Pass rare-earth carbonatite and associated ultrapotassic rocks, California. Can Mineral 46(4):779–806Google Scholar
  14. Chakhmouradian AR, Böhm CO, Demèny A, Reguir EP, Hegner E, Creaser RA, Halden NM, Yang P (2009) “Kimberlite” from Wekusko Lake, Manitoba: actually a diamond-indicator-bearing dolomite carbonatite. Lithos 112S:347–357Google Scholar
  15. Chakhmouradian AR, Reguir EP, Kressall RD, Crozier J, Pisiak LK, Sidhu R, Yang P (2015) Carbonatite-hosted niobium deposit at Aley, northern British Columbia (Canada): mineralogy, geochemistry and petrogenesis. Ore Geol Rev 64:642–666Google Scholar
  16. Chakhmouradian AR, Reguir EP, Zaitsev AN, Couëslan C, Xu C, Kynický J, Mumin AH, Yang P (2017) Apatite in carbonatitic rocks: compositional variation, zoning, element partitioning and petrogenetic significance. Lithos 274-275:188–213Google Scholar
  17. Chebotarev DA, Doroshkevich AG, Klemd R, Karmanov NS (2017) Evolution of Nb-mineralization in the Chuktukon carbonatite massif, Chadobets upland (Krasnoyarsk Territory, Russia). Periodico di Mineralogia 86(2):99–118Google Scholar
  18. Chomich VG, Boriskina NG (2010) Structural position of large gold ore districts in the Central Aldan (Yakutia) and Argun (Transbaikalia) superterranes. Russ Geol Geophys 51(6):661–671Google Scholar
  19. Dalton JA, Presnall DC (1998) The continuum of primary carbonatitic–kimberlitic melt compositions in equilibrium with lherzolite: data from system CaO-MgO-Al2O3-SiO2-CO2 at 6 GPa. J Petrol 39(11–12):1953–1964Google Scholar
  20. Dalton JA, Wood BJ (1993) The compositions of primary carbonate melts and their evolution through wallrock reaction in the mantle. Earth Planet Sci Lett 119(4):511–525Google Scholar
  21. Donskaya TV, Gladkochub DP, Kovach VP, Mazukabzov AM (2005) Petrogenesis of Early Proterozoic postcollisional granitoids in the southern Siberian craton. Petrology 13(3):253–279Google Scholar
  22. Doroshkevich AG, Kobylkina OV, Ripp GS (2003) Role of sulfates in the formation of carbonatites in the Western Transbaikal region. Dokl Earth Sci 388(1):131–134Google Scholar
  23. Doroshkevich AG, Wall F, Ripp GS (2007a) Magmatic graphite in dolomite carbonatite at Pogranichnoe, North Transbaikalia, Russia. Contrib Mineral Petrol 153(3):339–353Google Scholar
  24. Doroshkevich AG, Wall F, Ripp GS (2007b) Calcite-bearing dolomite carbonatite dykes from Veseloe, North Transbaikalia, Russia and possible Cr-rich mantle xenoliths. Mineral Petrol 90(1–2):19–49Google Scholar
  25. Doroshkevich AG, Ripp GS, Viladkar SG, Vladykin NV (2008) The Arshan REE carbonatites, southwestern Transbaikalia, Russia: mineralogy, paragenesis and evolution. Can Mineral 46(4):807–823Google Scholar
  26. Doroshkevich AG, Viladkar SG, Ripp GS, Burtseva MV (2009) Hydrothermal REE mineralization in the Amba Dongar carbonatite complex, Gujarat, India. Can Mineral 47(5):1105–1116Google Scholar
  27. Doroshkevich AG, Ripp GS, Moore KR (2010a) Genesis of the Khaluta alkaline-basic Ba-Sr carbonatite complex (West Transbaikala, Russia). Mineral Petrol 98(1–2):245–268Google Scholar
  28. Doroshkevich AG, Ripp GS, Viladkar S (2010b) Newania carbonatites, Western India: example of mantle derived magnesium carbonatites. Mineral Petrol 98(1–4):283–295Google Scholar
  29. Doroshkevich AG, Prokopyev IR, Izokh AE, Klemd R, Ponomarchuk AV, Nikolaeva IV, Vladykin NV (2018) Isotopic and trace element geochemistry of the Seligdar magnesiocarbonatites (South Yakutia, Russia): insights regarding the mantle evolution beneath the Aldan-Stanovoy shield. J Asian Earth Sci 154:354–368Google Scholar
  30. Egin VI and Kichigin LN (1975) Apatite ore-formation of the Central Aldan region. In: Phosphates of Yakutia. Yakutsk Institute of the Union of Soviet Socialist Republics Academy of Sciences, Yakutsk, pp 75–80 (in Russian)Google Scholar
  31. Elliott JC (1994) Structure and chemistry of the apatites and other calcium orthophosphates. Studies in inorganic chemistry, vol 18. Elsevier, Amsterdam-London-New York-TokyoGoogle Scholar
  32. Elliott HAL, Wall F, Chakhmouradian AR, Siegfried PR, Dahlgren S, Weatherley S, Finch AA, Marks MAW, Dowman E, Deadyi E (2018) Fenites associated with carbonatite complexes: a review. Ore Geol Rev 93:38–59Google Scholar
  33. Entin AR, Tyan OA (1984) Before-carbonatite step of formation of apatite deposits of Seligdar type (Aldan). Siberian Branch, Acad Sci USSR, Yakutsk, 28 pp (in Russian)Google Scholar
  34. Entin AP, Zaitzev AI, Labeznik KA, Nenachev NI, Marchintzev VK, Tyan OA (1991) Carbonatites of Yakutia: mineralogy and composition. Yakutsk Scientific Centre, Siberian Branch, Russian Academy of Sciences (in Russian)Google Scholar
  35. Ernst RE, Bell K (2010) Large igneous provinces (LIPs) and carbonatites. Mineral Petrol 98(1–4):55–76Google Scholar
  36. Ernst RE, Hamilton MA, Söderlund U, Hanes JA, Gladkochub DP, Okrugin AV, Kolotilina T, Mekhonoshin AS, Bleeker W, Le Cheminant AN, Buchan KL, Chamberlain KR, Didenko AN (2016) Long-lived connection between southern Siberia and northern Laurentia in the Proterozoic. Nat Geosci 9(6):464–469Google Scholar
  37. Foley SF, Yaxley GM, Rosenthal A, Buhre S, Kiseeva ES, Rapp RP, Jacob DE (2009) The composition of near-solidus melts of peridotite in the presence of CO2 and H2O between 40 and 60 kbar. Lithos 112S:274–283Google Scholar
  38. Gladkochub DP, Pisarevsky SA, Donskaya TV, Natapov LM, Mazukabzov AM, Stanevich AM, Sklyarov EV (2006) The Siberian craton and its evolution in terms of the Rodinia hypothesis. Episodes 29(3):169–174Google Scholar
  39. Gladkochub DP, Donskaya TV, Ernst R, Mazukabzov AM, Sklyarov EV, Pisarevsky SA, Wingate M, Söderlund U (2012) Proterozoic basic magmatism of the Siberian craton: main stages and their geodynamic interpretation. Geotectonics 46(4):273–284Google Scholar
  40. Gongalsky BI, Sukhanov MK, Goltzman YuV (2008) Sm-Nd system of Chiney anorthozite-gabbro-norithe pluton (East Transbaikalia). In: Conference “Problems of ore geology deposits, mineralogy, petrology and geochemistry”, April 22–24, 2008, Moscow. Abstract volume, pp 57–60 (in Russian)Google Scholar
  41. Guo ZF, Hertogen J, Liu JQ, Pasteels P, Boven A, Punzalan L, He HY, Luo XJ, Zhang WH (2005) Potassic magmatism in western Sichuan and Yunnan provinces, SE Tibet, China. J Petrol 46(1):33–78Google Scholar
  42. Harlov DE, Förster HJ (2003) Fluid-induced nucleation of REE phosphate minerals in apatite: nature and experiment. Part II. Fluorapatite. Am Mineral 88(8–9):1209–1229Google Scholar
  43. Harlov DE, Förster HJ, Nijland TG (2002) Fluid induced nucleation of REE-phosphate minerals in apatite: nature and experiment. Part I Chlorapatite. Am Mineral 87(2–3):245–261Google Scholar
  44. Harlov DE, Wirth R, Förster HJ (2005) An experimental study of dissolution-reprecipitation in fluorapatite: fluid infiltration and the formation of monazite. Contrib Mineral Petrol 150(3):268–286Google Scholar
  45. Harmer RE (1999) The petrogenetic association of carbonatite and alkaline magmatism: constraints from the Spitskop Complex, South Africa. J Petrol 40(4):525–548Google Scholar
  46. Harmer RE, Gittins J (1998) The case for primary, mantle-derived carbonatite magma. J Petrol 39(11–12):1895–1903Google Scholar
  47. Hetherington CJ, Harlov DE (2008) Metasomatic thorite and uraninite inclusions in xenotime and monazite from granitic pegmatites, Hidra anorthosite massif, southwestern Norway: mechanics and fluid chemistry. Am Mineral 93(5–6):806–820Google Scholar
  48. Hogarth DD (1989) Pyrochlore, apatite and amphibole: distinctive minerals in carbonatite. In: Bell K (ed) Carbonatites: genesis and evolution. Unwin Hyman, London, pp 105–148Google Scholar
  49. Hou Z, Tian S, Yuan Z, Xie Y, Yin S, Yi L, Fei H, Yang Z (2006) The Himalayan collision zone carbonatites in western Sichuan, SW China: petrogenesis, mantle source and tectonic implication. Earth Planet Sci Lett 244(1–2):234–250Google Scholar
  50. Issa Filho A, Lima PRAS, Souza OM (1984) Aspectos da geologia do complexo carbonatítico do Barreiro. Brasil. In: Araxá MG (ed) Complexos Carbonatiticos do Brasil: Geologia. CBMM Press, São Paulo, pp 20–44 (in Portuguese)Google Scholar
  51. Johan Z, Ohnenstetter D (2010) Zincochromite from the Guaniamo River diamondiferous placer, Venezuela: evidence of its metasomatic origin. Can Mineral 48(2):361–374Google Scholar
  52. Khomich VG, Boriskina NG (2010) Structural position of large gold ore districts in the Central Aldan (Yakutia) and Argun (Transbaikalia) superterranes. Russ Geol Geophys 51(6):661–671Google Scholar
  53. Khomich VG, Boriskina NG, Santosh M (2015) Geodynamics of Late Mesozoic PGE, Au, and U mineralization in the Aldan Shield, North Asian Craton. Ore Geol Rev 68:30–42Google Scholar
  54. Klemme S, van der Laan SR, Foley SF, Günther D (1995) Experimentally determined trace and minor element partitioning between clinopyroxene and carbonatite melt under upper mantle conditions. Earth Planet Sci Lett 133(3–4):439–448Google Scholar
  55. Lapin AV, Tolstov AV, Kulikova IM (2016) Distribution of REE, Y, Sc, and Th in the unique complex rare-metal ores of the Tomtor deposit. Geochem Int 54(12):1061–1078Google Scholar
  56. Larin AM, Kotov AB, Sal'nikova EB, Kovach VP, Makarev LB, Timashkov AN, Berezhnaya NG, Yakovleva SZ (2000) New data on the age of granites of the Kodar and Tukuringra complexes, eastern Siberia: geodynamic constraints. Petrology 8(3):267–279Google Scholar
  57. Le Bas MJ (2008) Fenites associated with carbonatites. Can Mineral 46(4):915–932Google Scholar
  58. Lee W, Wyllie PJ (1998) Petrogenesis of carbonatite magmas from mantle to crust, constrained by the system CaO-(MgO + FeO*)-(Na2O + K2O)-(SiO2 + Al2O3 + TiO2)-CO2. J Petrol 39(3):495–517Google Scholar
  59. Lindsley DH (1991) Experimental studies of oxide minerals. In: Lindsley DH (ed) Oxide minerals: petrologic and magnetic significance. Rev Mineral, vol 25. Miner Soc Am, Washington DC, pp 69–106Google Scholar
  60. Lomaev VG, Serdyuk SS (2011) The Chuktukonskoye deposit of niobium-rare-earth ores – a priority target for modernization of Russia's rare-metal industry. J Sib Fed Univ Eng Technol 2:132–154 (in Russian)Google Scholar
  61. Ludwig K R (2005a) SQUID 1.12 A User's Manual. A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, 22 pp. http://www.bgc.org/klprogrammenu.html
  62. Ludwig KR (2005b). User’s Manual for ISOPLOT/Ex 3.22. A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, 71 pp. http://www.bgc.org/klprogrammenu.html
  63. Mekhonoshin AS, Ernst R, Soderlund U, Hamilton MA, Kolotilin ATB, Izokh AE, Polyakov GV, Tolstykh ND (2016) Relationship between platinum-bearing ultramafic-mafic intrusions and large igneous provinces (exemplified by the Siberian craton). Russ Geol Geophys 57(5):822–833Google Scholar
  64. Minin VA, Vasilenko VB, Kuznetsova LG, Prugov VP (2016) To mineralogy of calcite-magnetite-apatite-serpentine rocks of the Seligdar deposit (Yakutia). Proceedings of the Russian Mineralogical Society CXLV 1, pp 80–104 (in Russian)Google Scholar
  65. Mitchell RH (2014) Primary and secondary niobium mineral deposits associated with carbonatites. Ore Geol Rev 64:626–664Google Scholar
  66. Morogan V (1994) Ijolite versus carbonatite as sources of fenitization. Terra Nova 6:166–176Google Scholar
  67. Neimark LA, Larin AM, Nemchin AA, Ovchinnikova GV, Rytsk EY (1998) Anorogenic nature of magmatism in the Northern Baikal volcanic belt: evidence from geochemical, geochronological (U-Pb), and isotopic (Pb, Nd). Petrology 6(2):124–148Google Scholar
  68. Nozhkin AD, Bibikova EV, Turkina OM, Ponomarchuk VA (2003) U-Pb, Ar-Ar, and Sm-Nd isotope-geochronological study of porphyritic subalkalic granites of the Taraka pluton (Yenisei Range). Russ Geol Geophys 44(9):842–852Google Scholar
  69. Otto JW, Wyllie PJ (1993) Relationship between silicatemelts and carbonate precipitating melts in CaO-MgO-SiO2-CO2-H2O at 2 kbar. Mineral Petrol 48(2–4):343–365Google Scholar
  70. Palmer DAS, Williams-Jones AE (1996) Genesis of the carbonatite-hosted fluorite deposit at Amba Dongar, India: evidence from fluid inclusions, stable isotopes, and whole rock-mineral geochemistry. Econ Geol 91(5):934–950Google Scholar
  71. Pirajno F, González-Álverez I, Chen W, Kyser KT, Simonetti A, Leduc E, IeGras M (2014) The Gifford Creek ferrocarbonatite complex, Gascoyne Province, Western Australia: associated fenite alteration and a putative link with the ∼1075 Ma Warakurna LIP. Lithos 202–203:100–119Google Scholar
  72. Popov NV, Kotov AB, Postnikov AA, Sal'nikova EB, Shaporina MN, Larin AM, Yakovleva SZ, Plotkina YV, Fedoseenko AM (2009) Age and tectonic position of the Chiney Layered Massif, Aldan shield. Dokl Earth Sci 424(1):64–67Google Scholar
  73. Prokop'ev IR, Borovikov AA, Pavlova GG, Borisenko AS (2014) The role of chloride-carbonate melts in the formation of Sideritic Carbonatites of the Karasug Fe-F-REE deposit (Tyva Republic, Russia). Dokl Earth Sci 455(2):446–449Google Scholar
  74. Prokopyev IR, Borisenko AS, Borovikov AA, Pavlova GG (2016) Origin of REE-rich ferrocarbonatites in southern Siberia (Russia): implications based on melt and fluid inclusions. Mineral Petrol 110(6):845–859Google Scholar
  75. Prokopyev IR, Doroshkevich AG, Ponomarchuk AV, Sergeev SA (2017) Mineralogy, age and genesis of apatite-dolomite ores at the Seligdar apatite deposit (Central Aldan, Russia). Ore Geol Rev 81:296–308Google Scholar
  76. Prokopyev IR, Doroshkevich AG, Redina AA, Obukhov AV (2018) Magnetite-apatite-dolomitic rocks of Ust-Chulman (Aldan shield, Russia). Mineral Petrol 112(2):257–266Google Scholar
  77. Schuth S, Gornyy VI, Berndt J, Shevchenko SS, Sergeev SA, Karpuzov AF, Mansfeldt T (2012) Early Proterozoic U-Pb zircon ages from basement gneiss at the Solovetsky Archipelago, White Sea, Russia. Int J Geosci 3(2):289–296Google Scholar
  78. Shironosova GP, Prokopyev IR (2017) REE+Y behavior in fluoride-chloride-sulphide-sulphate environment at hydrothermal stages of alkaline magmatic complex according to thermodynamic modeling. Bulletin of the Tomsk Polytechnic University, Geo Assets Engineering 328(12):75–83Google Scholar
  79. Shokhonova MN, Donskaya TV, Gladkochub DP, Mazukabzov AM, Paderin IP (2010) Paleoproterozoic basaltoids in the North Baikal volcanoplutonic belt of the Siberian craton: age and petrogenesis. Russ Geol Geophys 51(8):815–832Google Scholar
  80. Smelov AP, Nikitin VM, Biryul’kin GV, Popov NV (2001) Metallogenic units of North-Asian craton. In: Parfenov LM, Kuzmin MI (eds) Tectonics, geodynamics and metallogeny of the Sakha Republic (Yakutia). MAIK Nauka Interperiodica, Moscow, pp 301–333 (in Russian)Google Scholar
  81. Smirnov FL, Marshintsev ZK, Moskvitina AV (1976) Typomorphic features of apatite deposits and occurrences of the Aldan Shield. In: Phosphorus geochemistry and mineralogy characteristics of apatite, Yakutsk, Union of Soviet Socialist Republics Academy of Sciences, pp 5–31 (in Russian)Google Scholar
  82. Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett 26:207–221Google Scholar
  83. Sweeney RJ (1994) Carbonatite melt compositions in the Earth's mantle. Earth Planet Sci Lett 128(3–4):259–270Google Scholar
  84. Sweeney RJ, Prozesky V, Przybylowicz W (1995) Selected trace and minor element partitioning between peridotite minerals and carbonatite melts at 18-46 kbar pressure. Geochim Cosmochim Acta 59(18):3671–3683Google Scholar
  85. Tropper P, Manning CE, Harlov DE (2011) Solubility of CePO4 monazite and YPO4 xenotime in H2O and H2O-NaCl at 800°C and 1 GPa: implications for REE and Y transport during high-grade metamorphism. Chem Geol 282(1–2):58–66Google Scholar
  86. Turkina OM, Bibikova EV, Nozhkin AD (2003) Stages and geodynamic settings of Early Proterozoic granite formation on the southwestern margin of the Siberian craton. Dokl Earth Sci 389(2):159–163Google Scholar
  87. Van Wambeke L (1965) A study of some niobium-bbearing minerals of the Lueshe carbonatite deposit (Kivu, Republic of Congo). Euratom, BrusselsGoogle Scholar
  88. Vladykin NV, Morikyo T, Miuazaki T (2005) Sr and Nd isotopes geochemistry of alkaline and carbonatite complexes of Siberia and Mongolia and some geodynamic consequences. In: 5th International Conference “Problems of sources of deep magmatism and plumes”, August 15–23, 2005, Petropavlovsk-Kamchatsky, Russia. Proceedings, vol 1, pp 19–37Google Scholar
  89. Vrublevskii VV, Pokrovskii BG, Zhuravlev DZ, Anoshin GN (2003) Composition and age of pechenga linear carbonatite complex, Eniseyskii kryazh. Petrology 11(2):130–147Google Scholar
  90. Wall F and Zaitsev AN (2004) Phoscorites and carbonatites from mantle to mine: the key example of the Kola Alkaline Province. Mineralogical Society Series 10. Mineralogical Society, London, pp 498Google Scholar
  91. Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Mineral 95(1):185–187Google Scholar
  92. Williams-Jones AE, Migdisov AA, Samson IM (2012) Hydrothermal mobilization of the rare earth elements-a tale of “Ceria” and “Yttria”. Elements 8(5):355–360Google Scholar
  93. Woolley AR, Kjarsgaard BA (2008a) Carbonatite occurrences of the world: map and database. J Petrol 50(1):195–196Google Scholar
  94. Woolley AR, Kjarsgaard BA (2008b) Paragenetic types of carbonatite as indicated by the diversity and relative abundances of associated silicate rocks: evidence from a global database. Can Mineral 46(4):741–752Google Scholar
  95. Xu C, Campbell IH, Kynicky J, Allen CM, Chen Y, Huang Z, Qi L (2008) Comparison of the Daluxiang and Maoniuping carbonatitic REE deposits with Bayan Obo REE deposit, China. Lithos 106:12–24Google Scholar
  96. Yang XM, Yang XY, Zhang PS, Le Bas MJ (2000) Ba-REE fluorcarbonate minerals from a carbonatite dyke at Bayan obo, Inner Mongolia, North China. Mineral Petrol 70(3–4):221–234Google Scholar
  97. Zaitzev AI, Entin AP, Nenashev NI, Labeznik KA, Tyan OA (1992) Geochronology and isotope geochemistry of carbonatites from Yakutia. Yakutsk Scientific Centre, Siberian Branch, Russian Academy of Sciences (in Russian)Google Scholar
  98. Zharikov VA, Pertsev NN, Rusinov VL, Callegari E, Fettes DJ (2007) Metasomatism and metasomatic rocks. In: Recommendations by the IUGS Subcommission of the Systematics of Metamorphic Rocks. British Geological SurveyGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Ilya R. Prokopyev
    • 1
    • 2
    Email author
  • Anna G. Doroshkevich
    • 1
    • 3
    • 4
  • Sergey A. Sergeev
    • 5
  • Richard E. Ernst
    • 3
    • 6
  • Jean D. Ponomarev
    • 1
    • 2
  • Anna A. Redina
    • 1
  • Dmitry A. Chebotarev
    • 1
  • Anna M. Nikolenko
    • 1
  • Vladislav F. Dultsev
    • 1
    • 7
  • Tatyana N. Moroz
    • 1
  • Alexey V. Minakov
    • 8
  1. 1.Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia
  3. 3.Tomsk State UniversityTomskRussia
  4. 4.Geological Institute, Siberian Branch of the Russian Academy of SciencesUlan-UdeRussia
  5. 5.A.P. Karpinsky Russian Geological Research Institute (VSEGEI)St. PetersburgRussia
  6. 6.Department of Earth SciencesCarleton UniversityOttawaCanada
  7. 7.Kazan Federal UniversityKazanRussia
  8. 8.Yakutskgeologiya Federal State Unitary Mining Geological Enterprise of the Sakha RepublicAldanRussia

Personalised recommendations