Advertisement

Geochemistry and origin of the Mirny field kimberlites, Siberia

  • Aleksey M. Agashev
  • Shun’ichi Nakai
  • Ilya V. Serov
  • Aleksander V. Tolstov
  • Konstantin V. Garanin
  • Oleg E. Kovalchuk
Original Paper

Abstract

Here we present new data from a systematic Sr, Nd, O, C isotope and geochemical study of kimberlites of Devonian age Mirny field that are located in the southernmost part of the Siberian diamondiferous province. Major and trace element compositions of the Mirny field kimberlites show a significant compositional variability both between pipes and within one diatreme. They are enriched in incompatible trace elements with La/Yb ratios in the range of (65–300). Initial Nd isotope ratios calculated back to the time of the Mirny field kimberlite emplacement (t = 360 ma) are depleted relative to the chondritic uniform reservoir (CHUR) model being 4 up to 6 ɛNd(t) units, suggesting an asthenospheric source for incompatible elements in kimberlites. Initial Sr isotope ratios are significantly variable, being in the range 0.70387–0.70845, indicating a complex source history and a strong influence of post-magmatic alteration. Four samples have almost identical initial Nd and Sr isotope compositions that are similar to the prevalent mantle (PREMA) reservoir. We propose that the source of the proto-kimberlite melt of the Mirny field kimberlites is the same as that for the majority of ocean island basalts (OIB). The source of the Mirny field kimberlites must possess three main features: It should be enriched with incompatible elements, be depleted in the major elements (Si, Al, Fe and Ti) and heavy rare earth elements (REE) and it should retain the asthenospheric Nd isotope composition. A two-stage model of kimberlite melt formation can fulfil those requirements. The intrusion of small bodies of this proto-kimberlite melt into lithospheric mantle forms a veined heterogeneously enriched source through fractional crystallization and metasomatism of adjacent peridotites. Re-melting of this source shortly after it was metasomatically enriched produced the kimberlite melt. The chemistry, mineralogy and diamond grade of each particular kimberlite are strongly dependent on the character of the heterogeneous source part from which they melted and ascended.

Keywords

Kimberlite Geochemistry Sr-Nd isotopes Lithospheric mantle Siberia 

Notes

Acknowledgements

We are grateful to Yuji Orihashi for discussions. Reviews by Montgarry Castillo-Oliver and Larry Heaman greatly helped to improve the manuscript. The editorial handling by Andrea Giuliani and Lutz Nasdala is highly appreciated. The research was supported by the Russian Foundation for Basic Research, grants 15-05-07758a and 16-05-00811a and by state assignment project (project 0330-2016-0006). This work was partially supported by the Earthquake Research Institute of the University of Tokyo Cooperative Research Program.

Supplementary material

710_2018_617_MOESM1_ESM.xls (124 kb)
ESM 1 (XLS 124 kb)

References

  1. Agashev AM, Orihashi Y, Watanabe T, Pokhilenko NP, Serenko VP (2000) Isotope-geochemical features of the Siberian Platform kimberlites in connection with the problem of their origin. Russ Geol Geophys 41(1):87–97Google Scholar
  2. Agashev AM, Watanabe T, Bydaev DA, Pokhilenko NP, Fomin AS, Maehara K, Maeda J (2001) Geochemistry of kimberlites from the Nakyn field, Siberia: evidence for unique source composition. Geology 29:267–270CrossRefGoogle Scholar
  3. Agashev AM, Pokhilenko NP, Malkovetz VG, Sobolev NV (2006) Sm–Nd isotopic system in garnet megacrysts from the Udachnaya kimberlite pipe (Yakutia) and petrogenesis of kimberlites. Dokl Earth Sci 407:491–494CrossRefGoogle Scholar
  4. Agashev AM, Pokhilenko NP, Takazawa E, McDonald JA, Vavilov MA, Watanabe T, Sobolev NV (2008) Primary melting sequence of a deep (>250 km) lithospheric mantle as recorded in the geochemistry of kimberlite-carbonatite assemblages, Snap Lake dyke system, Canada. Chem Geol 255:317–328CrossRefGoogle Scholar
  5. Agashev AM, Orihashi Y, Pokhilenko NP, Serov IV, Tolstov AV, Nakai S (2016) Age of Mirny field kimberlites (Siberia) and application of Rutile and Titanite for U–Pb dating of kimberlite emplacement by LA-ICP-MS. Geochem J 50:431–438CrossRefGoogle Scholar
  6. Becker M, Le Roex AP (2006) Geochemistry of south African on- and off-craton, Group I and Group II kimberlites: petrogenesis and source region evolution. J Petrol 47:673–703CrossRefGoogle Scholar
  7. Bussweiler Y, Foley SF, Prelević D, Jacob DE (2015) The olivine macrocryst problem: new insights from minor and trace element compositions of olivine from Lac de Gras kimberlites, Canada. Lithos 220–223:238–252CrossRefGoogle Scholar
  8. Carlson RW, Czamanske G, Fedorenko V, Ilupin I (2006) A comparison of Siberian meimechites and kimberlites: implications for the source of high-Mg alkalic magmas and flood basalts. Geochem Geophys Geosyst 7:Q11014CrossRefGoogle Scholar
  9. Clement CR, Skinner EMW (1985) A textural genetic classification of kimberlites. Trans Geol Soc S Afr 88:403–409Google Scholar
  10. Davis GL, Sobolev NV, Khar'kiv AN (1980) New data on Yakytian kimberlites age obtained by U–Pb method on zirkons. Dokl Akad Nauk 254(1):175–179Google Scholar
  11. Deines P (1989) Stable isotope variations in carbonatites. In: Bell K (ed) Carbonatites: genesis and evolution. Unwin Hyman, London, pp 301–359Google Scholar
  12. Deines P (2002) The carbon isotope geochemistry of mantle xenoliths. Earth Sci Rev 58:247–278CrossRefGoogle Scholar
  13. Demeny A, Ahijado A, Casillas R, Vennemann TW (1998) Crustal contamination and fluid/rock interaction in the carbonatites of Fuerteventura (Canary Islands, Spain): a C, O, H isotope study. Lithos 44:101–115CrossRefGoogle Scholar
  14. Duke GI, Carlson RW, Frost CD, Hearn BC Jr, Eby GN (2014) Continent-scale linearity of kimberlite–carbonatite magmatism, mid-continent North America. Earth Planet Sci Lett 403:1–14CrossRefGoogle Scholar
  15. Faure G (1986) Principles of isotope geology. Wiley, New YorkGoogle Scholar
  16. Giuliani A, Kamenetsky VS, Phillips D, Kendrick MA, Wyatt BA, Goemann K (2012) Nature of alkali-carbonate fluids in the sub-continental lithospheric mantle. Geology 40:967–970CrossRefGoogle Scholar
  17. Giuliani A, Phillips D, Kamenetsky VS, Fiorentini ML, Farquhar J, Kendrick MA (2014) Stable isotope (C, O, S) compositions of volatile-rich minerals in kimberlites: a review. Chem Geol 374:61–83CrossRefGoogle Scholar
  18. Giuliani A, Phillips D, Woodhead JD, Kamenetsky VS, Fiorentini ML, Maas R, Soltys A, Armstrong RA (2015) Did diamond-bearing orangeites originate from MARID-veined peridotites in the lithospheric mantle? Nat Commun 6:6837CrossRefGoogle Scholar
  19. Giuliani A, Phillips D, Kamenetsky VS, Goemann K (2016) Constraints on kimberlite ascent mechanisms revealed by phlogopite compositions in kimberlites and mantle xenoliths. Lithos 240–243:189–201CrossRefGoogle Scholar
  20. Giuliani A, Soltys A, Phillips D, Kamenetsky VS, Maas R, Goemann K, Woodhead JD, Drysdale RN, Griffin WL (2017) The final stages of kimberlite petrogenesis: petrography, mineral chemistry, melt inclusions and Sr-C-O isotope geochemistry of the Bultfontein kimberlite (Kimberley, South Africa). Chem Geol 455:342–356CrossRefGoogle Scholar
  21. Haggerty SE (1994) Superkimberlites: a geodynamic diamond window to the Earth's core. Earth Planet Sci Lett 122:57–69CrossRefGoogle Scholar
  22. Hofmann AW (1997) Mantle geochemistry: the message from oceanic volcanism. Nature 385:219–229CrossRefGoogle Scholar
  23. Kamenetsky VS, Kamenetsky MB, Sobolev AV, Golovin AV, Demouchy S, Faure K, Sharygin VV, Kuzmin DV (2008) Olivine in the Udachnaya-east kimberlite (Yakutia, Russia): types, compositions and origins. J Petrol 49:823–839CrossRefGoogle Scholar
  24. Kiselev AI, Yarmolyuk VV, Ivanov AV, Egorov KN (2014) Middle Paleozoic basaltic and kimberlitic magmatism in the northwestern shoulder of the Vilyui Rift, Siberia: relations in space and time. Russ Geol Geophys 55(2):185–196CrossRefGoogle Scholar
  25. Kjarsgaard BA, Pearson DG, Tappe S, Nowell GM, Dowall D (2009) Geochemistry of hypabyssal kimberlites from Lac de Gras, Canada: comparisons to a global database and applications to the parent magma problem. Lithos 112:236–248CrossRefGoogle Scholar
  26. Klein-BenDavid O, Pearson DG, Nowell GM, Ottley C, McNeill JCR, Logvinova A, Sobolev NV (2014) The sources and time-integrated evolution of diamond-forming fluids – trace elementsand isotopic evidence. Geochim Cosmochim Acta 125:146–169CrossRefGoogle Scholar
  27. Kopylova MG, Kostrovitsky SI, Egorov KN (2013) Salts in southern Yakutian kimberlites and the problem of primary alkali kimberlite melts. Earth Sci Rev 119:1–16CrossRefGoogle Scholar
  28. Kostrovitsky SI, Morikiyo T, Serov IV (2007) Isotope geochemical systematics of kimberlites and related rocks from the Siberian Platform. Russ Geol Geophys 48:272–290CrossRefGoogle Scholar
  29. Le Roex AP, Bell DR, Devis P (2003) Petrogenesis of group I kimberlites from Kimberley, South Africa: evidence from bulk-rock geochemistry. J Petrol 44:2261–2286CrossRefGoogle Scholar
  30. McDonough WF, Sun S-s (1995) The composition of the Earth. Chem Geol 120:223–253Google Scholar
  31. Nikolaeva I, Palesskii S, Koz’menko O, Anoshin G (2008) Analysis of geologic reference materials for REE and HFSE by inductively coupled plasma-mass spectrometry (ICP-MS). Geochem Int 46:1016–1022CrossRefGoogle Scholar
  32. Nishio Y, Nakai S, Yamamoto J, Sumino H, Matsumoto T, Prikhod’ko VS, Arai S (2004) Lithium isotopic systematics of the mantle-derived ultramafic xenoliths: implications for EM1 origin. Earth Planet Sci Lett 217:245–261CrossRefGoogle Scholar
  33. Nowell GM, Pearson DG, Bell DR, Carlson RW, Smith CB, Kempton PD, Noble SR (2004) Hf isotope systematics of kimberlites and their megacrysts: new constraints on their source regions. J Petrol 45:1583–1612CrossRefGoogle Scholar
  34. Pokhilenko NP, Agashev AM, Litasov KD, Pokhilenko LN (2015) Carbonatite metasomatism of peridotite lithospheric mantle: implications for diamond formation and carbonatite-kimberlite magmatism. Russ Geol Geophys 56(1–2):280–295CrossRefGoogle Scholar
  35. Ringwood AE, Kesson SE, Hibberson W, Ware N (1992) Origin of kimberlites and related magmas. Earth Planet Sci Lett 113(4):521–538Google Scholar
  36. Rosenthal A, Foley SF, Pearson DG, Nowell GM, Tappe S (2009) Petrogenesis of strongly alkaline primitive volcanic rocks at the propagating tip of the western branch of the East African Rift. Earth Planet Sci Lett 284:236–248CrossRefGoogle Scholar
  37. Smith CB (1983) Pb, Sr and Nd isotopic evidence for sources of southern African Cretaceous kimberlites. Nature 304:51–54CrossRefGoogle Scholar
  38. Smith CB, Gurney JJ, Skinner EMW, Clement CR, Ebrahim N (1985) Geochemical character of southern African kimberlites: a new approach based on isotopic constraints. Trans Geol Soc S Afr 88:267–280Google Scholar
  39. Soltys A, Giuliani A, Phillips D, Kamenetsky VS, Maas R, Woodhead JD, Rodemann T (2016) In-situ assimilation of mantle minerals by kimberlitic magmas - direct evidence from a garnet wehrlite xenolith entrained in the Bultfontein kimberlite (Kimberley, South Africa). Lithos 256–257:182–196CrossRefGoogle Scholar
  40. Sun J, Liu CZ, Tappe S, Kostrovitsky SI, Wu FY, Yakovlev D, Yang Y-H, Yang JH (2014) Repeated kimberlite magmatism beneath Yakutia and its relationship to Siberian flood volcanism: insights from in situ U-Pb and Sr-Nd perovskite isotope analysis. Earth Planet Sci Lett 404:283–295CrossRefGoogle Scholar
  41. Surgutanova EA, Agashev AM, Demonterova EI, Golovin AV, Pokhilenko NP (2016) Sr and Nd isotope composition of deformed peridotite xenoliths from Udachnaya kimberlite pipe. Dokl Earth Sci 471:1204–1207CrossRefGoogle Scholar
  42. Tainton KM, McKenzie D (1994) The generation of kimberlites, lamproites, and their source rocks. J Petrol 35:787–817CrossRefGoogle Scholar
  43. Tappe S, Pearson DG, Nowell G, Nielsen T, Milstead P, Muehlenbachs K (2011) A fresh isotopic look at Greenland kimberlites: cratonic mantle lithosphere imprint on deep source signal. Earth Planet Sci Lett 305:235–248CrossRefGoogle Scholar
  44. Tappe S, Kjarsgaard BA, Kurszlaukis S, Nowell GM, Phillips D (2014) Petrology and Nd-Hf isotope geochemistry of the Neoproterozoic Amon kimberlite sills, Baffin Island (Canada): evidence for deep mantle magmatic activity linked to supercontinent cycles. J Petrol 55:2003–2042CrossRefGoogle Scholar
  45. Tappe S, Brand NB, Stracke A, van Acken D, Liu C-Z, Strauss H, Wu F-Y, Luguet A, Mitchell RH (2017) Plates or plumes in the origin of kimberlites: U/Pb perovskite and Sr-Nd-Hf-Os-C-O isotope constraints from the Superior craton (Canada). Chem Geol 455:57–83CrossRefGoogle Scholar
  46. Taylor WR, Tomkins LA, Haggerty SE (1994) Comparative geochemistry of west African kimberlites: evidence for a micaceous kimberlite endmember of sublithospheric origin. Geochim Cosmochim Acta 58:4017–4037CrossRefGoogle Scholar
  47. Torsvik TH, Burke K, Steinberger B, Webb SJ, Ashwal LD (2010) Diamonds sampled by plumes from the core-mantle boundary. Nature 466:352–355CrossRefGoogle Scholar
  48. Vladimirov BM, Kostrovitsky SI, Solovieva LV, Botkunov AI, Fiveiskaya L, Egorov KN (1981) Classification of kimberlites and internal structure of kimberlite pipes. Nauka, Moscow, 131 pp (in Russian)Google Scholar
  49. Weaver BL (1991) Trase element evidense for the origin of ocean-island basalts. Geology 19:123–126CrossRefGoogle Scholar
  50. Willbold M, Stracke A (2006) Trace element composition of mantle end-members: implications for recycling of oceanic and upper and lower continental crust. Geochem Geophys Geosyst 7(4):Q04004CrossRefGoogle Scholar
  51. Wilson MR, Kjarsgaard BA, Taylor B (2007) Stable isotope composition of magmatic and deuteric carbonate phases in hypabyssal kimberlite, Lac de Gras field, Northwest Territories, Canada. Chem Geol 242:435–454CrossRefGoogle Scholar
  52. Woodhead J, Hergt J, Phillips D, Paton C (2009) African kimberlites revisited: in situ Sr isotope analysis of groundmass perovskite. Lithos 112(S1):311–317CrossRefGoogle Scholar
  53. Yaxley GM, Berry AJ, Rosenthal A, Woodland AB, Paterson D (2017) Redox preconditioning deep cratonic lithosphere for kimberlite genesis – evidence from the central Slave Craton. Sci Rep-UK 7:30CrossRefGoogle Scholar
  54. Zindler A, Hart SR (1986) Chemical geodynamics. Annu Rev Earth Planet Sci 14:493–571CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.V.S. Sobolev Institute of Geology and MineralogyNovosibirskRussia
  2. 2.Earthquake Research InstituteThe University of TokyoTokyoJapan
  3. 3.ALROSA Co Ltd.MirnyRussia

Personalised recommendations