Mineralogy and Petrology

, Volume 112, Supplement 2, pp 519–537 | Cite as

Insights into the petrogenesis of the West Kimberley lamproites from trace elements in olivine

  • A. Lynton JaquesEmail author
  • Stephen F. Foley
Original Paper


The Miocene lamproites of the West Kimberley region, Western Australia include olivine-leucite lamproites (≤10 wt% MgO) containing olivine and leucite microphenocrysts, and diamondiferous olivine lamproites (20–30 wt% MgO) containing olivine phenocrysts and larger (1–10 mm) olivine as mantle xenocrysts and dunite micro-xenoliths. Olivine phenocrysts and thin (<100 μm) magmatic rims define trends of decreasing Cr and Ni, and increasing Ca and Mn, with decreasing olivine Mg#, consistent with fractional crystallisation of olivine (and minor chromite). Many phenocrysts are zoned, and those with cores of similar Mg# and trace element abundances to the mantle xenocrysts may be xenocrysts overgrown by later olivine crystallised from the lamproite magma. Magmatic olivines Mg#91–92 are estimated to have been in equilibrium with olivine lamproite magma(s) containing ~22–24 wt% MgO. The xenocrystic mantle olivines Mg90–92.5 in the olivine lamproites are inferred from trace element abundances to be mostly derived from garnet peridotite with equilibration temperatures estimated from the Al-in-olivine thermometer (Bussweiler et al. 2017) to be ~1000–1270 °C at depths of 115–190 km. Olivines from the deeper lithosphere are less depleted (lower Mg#, higher Na, Al, P, Ti, Zr etc) than those at shallower depths, a feature suggested to reflect the combined effects of metasomatic re-enrichment of the craton roots (Ti, Fe, Zr etc) and increasing temperature with depth of origin (Na, Al, Ca). The West Kimberley lamproite olivines are not enriched in Li, as might be expected if their source regions contained continental sedimentary material as has been previously inferred from lamproite large-ion-lithophile trace elements, and Sr and Pb isotopes.


Lamproite Olivine Mantle West Kimberley Trace elements 



We thank Robert Rapp (ANU) for the X-ray maps and for assistance with the EPMA analyses, and James Tolley and Patrick Goodarzi (ANU) and Peter Tolland (formerly ANU) for assistance with the LA-ICP-MS analyses. Geoscience Australia kindly provided the geological map. Karol Czarnota (Geoscience Australia) drew our attention to the conductivity anomaly in the West Kimberley region. We thank two anonymous reviewers for their constructive reviews that significantly improved the manuscript and guest editor Phil Janney for his handling of the manuscript. ALJ acknowledges the support of Australian Research Council Grants DP140103841 and DP140101976 in undertaking the study.

Supplementary material

710_2018_612_MOESM1_ESM.docx (21 kb)
ESM 1 (DOCX 20 kb)
710_2018_612_MOESM2_ESM.xlsx (20 kb)
Supplementary Table S1 (XLSX 20 kb)
710_2018_612_MOESM3_ESM.xlsx (93 kb)
Supplementary Table S2 (XLSX 93 kb)
710_2018_612_MOESM4_ESM.xlsx (72 kb)
Supplementary Table S3 (XLSX 72 kb)
710_2018_612_MOESM5_ESM.xlsx (20 kb)
Supplementary Table S4 (XLSX 19 kb)


  1. Ahmat AL (2012) The Ellendale diamond field: exploration history, discovery, geology and mining. Aust Gemmol 24:280–288Google Scholar
  2. Ammannati E, Jacob DE, Avanzinelli R, Foley SF, Conticellia S (2016) Low Ni olivine in silica-undersaturated ultrapotassic igneous rocks as evidence for carbonate metasomatism in the mantle. Earth Planet Sc Lett 444:64–74CrossRefGoogle Scholar
  3. Anderson DL (2011) Hawaii, boundary layers and ambient mantle−geophysical constraints. J Petrol 52:1547–1577CrossRefGoogle Scholar
  4. Atkinson WJ, Hughes FE, Smith CB (1984) A review of the kimberlitic rocks of Western Australia. In: Kornprobst J (ed) Kimberlites 1: kimberlites and related rocks. Elsevier, Amstrdam, pp 195–224CrossRefGoogle Scholar
  5. Aulbach S (2012) Craton nucleation and formation of thick lithospheric roots. Lithos 149:16–30CrossRefGoogle Scholar
  6. Boyd FR, Pokhilenko NP, Pearson DG, Mertzman SA, Sobolev NV, Finger LW (1997) Composition of the Siberian cratonic mantle: evidence from Udachnaya peridotite xenoliths. Contrib Mineral Petr 128:228–246CrossRefGoogle Scholar
  7. Brett RC, Russell JK, Moss A (2009) Origin of olivine in kimberlite: phenocryst or impostor? Lithos 112S:201–212CrossRefGoogle Scholar
  8. Bussweiler Y, Foley SF, Prelević D, Jacob DE (2015) The olivine macrocryst problem: new insights from minor and trace element compositions of olivine from Lac de Gras kimberlites, Canada. Lithos 220–223:238–252CrossRefGoogle Scholar
  9. Bussweiler Y, Brey GP, Pearson DG, Stachel T, Stern RA, Hardman MF, Kjarsgaard BA, Jackson SE (2017) The aluminum-in-olivine thermometer for mantle peridotites - experimental versus empirical calibration and potential applications. Lithos 272–273:301–314CrossRefGoogle Scholar
  10. De Hoog JCM, Gall L, Cornell DH (2010) Trace-element geochemistry of mantle olivine and application to mantle petrogenesis and geothermobarometry. Chem Geol 270:196–215CrossRefGoogle Scholar
  11. Demouchy S (2010) Diffusion of hydrogen in olivine grain boundaries and implications for the survival of water-rich zones in the Earth’s mantle. Earth Planet Sc Lett 295(1–2):305–313CrossRefGoogle Scholar
  12. Fishwick S, Rawlinson N (2012) 3-D structure of the Australian lithosphere from evolving seismic datasets. Aust J Earth Sci 59:809–826CrossRefGoogle Scholar
  13. Foley SF (1985) The oxidation state of lamproitic magmas. Tscher Miner Petrog 34:217–238CrossRefGoogle Scholar
  14. Foley SF (1989) The genesis of lamproitic magmas in a reduced fluorine-rich mantle. In: Ross J et al (eds) Kimberlites and related rocks: their composition, occurrence, origin and emplacement. Geol Soc Australia Spec Publ 14, vol 1. Blackwell, Oxford, pp 616–631Google Scholar
  15. Foley SF (1992) Vein-plus-wall-rock melting mechanisms in the lithosphere and the origin of potassic alkaline magmas. Lithos 28:435–453CrossRefGoogle Scholar
  16. Foley SF (1993) An experimental study of olivine lamproite: First results from the diamond stability field. Geochim Cosmochim Ac 57:483–−489CrossRefGoogle Scholar
  17. Foley SF, Venturelli G, Green DH, Toscani L (1987) The ultrapotassic rocks: characteristics, classification, and constraints for petrogenetic models. Earth-Sci Rev 24:81–134CrossRefGoogle Scholar
  18. Foley SF, Prelević D, Rehfeldt T, Jacob DE (2013) Minor and trace elements in olivines as probes into early igneous and mantle melting processes. Earth Planet Sc Lett 363:81–191CrossRefGoogle Scholar
  19. Förster MW, Prelević D, Schmueck HR, Buhre S, Veter M, Mertz-Kraus R, Foley SF, Jacob DE (2017) Melting and dynamic metasomatism of mixed harzburgite + glimmerite mantle source: implications for the genesis of orogenic potassic magmas. Chem Geol 455:182–191CrossRefGoogle Scholar
  20. Förster MW, Prelević D, Schmück HR, Buhre S, Marschall HR, Mertz-Kraus R, Jacob DE (2018) Melting phlogopite-rich MARID: Lamproites and the role of alkalis in olivine-liquid Ni-partitioning. Chem Geol 476:429–440CrossRefGoogle Scholar
  21. Fraser KJ, Hawkesworth CJ, Erlank AJ, Mitchell RH, Scott-Smith BH (1985) Sr, Nd and Pb isotope and minor element geochemistry of lamproites and kimberlites. Earth Planet Sc Lett 76:57–70CrossRefGoogle Scholar
  22. Giuliani A, Soltys A, Lim E, Farr H, Phillips D, Goemann J, Griffin WL (2017) Olivine zoning and the evolution of kimberlite systems. In: 11th International Kimberlite Conference, Extended Abstract 11IKC-4916Google Scholar
  23. Griffin WL, Ryan CG (1995) Trace elements in indicator minerals: area selection and target evaluation in diamond exploration. J Geochem Explor 53:311–337CrossRefGoogle Scholar
  24. Griffin WL, Kaminsky FV, Ryan CG, O'Reilly SY, Win TT, Ilupin IP (1996) Thermal state and composition of the lithospheric mantle beneath the Daldyn kimberlite field, Yakutia. Tectonophysics 262:19–33CrossRefGoogle Scholar
  25. Griffin WL, O’Reilly S, Natapov LM, Ryan CG (2003) The evolution of the lithospheric mantle beneath the Kalahari Craton and its margins. Lithos 71:215–241Google Scholar
  26. Griffin WL, O’Reilly SY, Doyle BJ, Pearson NJ, Coopersmith H, Kivie K, Malkovets V, Pokhilenko N (2004) Lithosphere mapping beneath the North American plate. Lithos 77:873–922Google Scholar
  27. Hall AE, Smith CB (1985) Lamproite diamonds- are they different? In: Glover JE, Harris PG (eds) Kimberlite occurrence and origin: a basis for conceptual models in exploration. Geology Department and University Extension, University of Western Australia, Publ pp 167–212Google Scholar
  28. Hart SR, Davis KE (1978) Nickel partitioning between olivine and silicate melt. Earth Planet Sc Lett 40:203–219CrossRefGoogle Scholar
  29. Herzberg C (2011) Identification of source lithology in the Hawaiian and Canary Islands: implications for origins. J Petrol 52:113–146CrossRefGoogle Scholar
  30. Jaques AL (2016) Major and trace element variations in oxide and titanate minerals in the West Kimberley lamproites, Western Australia. Miner Petrol 110:159–197CrossRefGoogle Scholar
  31. Jaques AL, Lewis JD, Smith CB, Gregory GP, Feguson J, Chappell BW, McCulloch MT (1984) The diamond-bearing ultrapotassic (lamproitic) rocks of the West Kimberley region, Western Australia. In: Kornbprobst J et al (eds) Kimberlites I: kimberlites and related rocks. Elsevier, Amsterdam, pp 225–254CrossRefGoogle Scholar
  32. Jaques AL, Lewis JD, Smith CB (1986) The kimberlites and lamproites of Western Australia. Geological Survey West Australia Bulletin 132 268 ppGoogle Scholar
  33. Jaques AL, Hall AE, Sheraton J, Smith CB, Sun S-S, Drew RM, Foudoulis C, Ellingsen K (1989) Composition of crystalline inclusions and C-isotopic composition of Argyle and Ellendale diamonds. In: Ross J et al (eds) Kimberlites and related rocks: Their mantle/crust setting, diamonds and diamond exploration. Geol Soc Australia Spec Publ 14 vol 2, Blackwells, Carlton, pp 966–989Google Scholar
  34. Jaques AL, O'Neill HSC, Smith CB, Moon J, Chappell BW (1990) Diamondiferous peridotite xenoliths from the Argyle (AK1) lamproite pipe, Western Australia. Contrib Mineral Petr 104:255–276CrossRefGoogle Scholar
  35. Jaques AL, Hall AE, Sheraton J, Smith CB, Roksandic Z (1994) Peridotitic planar octahedral diamonds from the Ellendale lamproite pipes, Western Australia. In: Meyer HOA, Leonardos OH (eds) Diamonds: characterisation, genesis and exploration. Companhia de Pesquisa de Recursos Minerais Spec Publ Jan/94, vol 2, Brasilia, pp 69–77Google Scholar
  36. Jaques AL, Luguet A, Smith CB, Pearson DG, Yaxley GM, Kobussen A (2018) Nature of the mantle beneath the Argyle AK1 lamproite pipe: constraints from mantle xenoliths, diamonds, and lamproite geochemistry. Soc Econ Geol Spec Publ (in press)Google Scholar
  37. Jarosewich E, Nelen JA, Norberg JA (1980) Reference samples for electron microprobe analysis. Geostand Newslett 4:43–47CrossRefGoogle Scholar
  38. Jenner FE, O’Neill HSC (2012) Major and trace element analysis of basaltic glasses by laser-ablation ICP-MS. Geochem Geophy Geosy 13(Q03003):1–17Google Scholar
  39. Jochum KP, Weis U, Stoll B, Kuzmin D, Yang Q, Raczek I, Jacob DE, Stracke A, Birbaum K, Frick DA, Günther D, Enzweiller J (2011) Determination of reference values for NIST SRM 610–617 glasses following ISO guidelines. Geostand Geoanal Res 35:397–429CrossRefGoogle Scholar
  40. Kamenetsky VS, Kamenetsky MB, Sobolev AV, Golovin AV, Demouchy S, Faure K, Sharygin VV, Kuzmin DV (2008) Olivine in the Udachnaya-East Kimberlite (Yakutia, Russia): types, compositions and origins. J Petrol 49:823–839CrossRefGoogle Scholar
  41. Köhler T, Brey GP (1990) Ca-exchange between olivine and clinopyroxene as a geothermobarometer calibrated from 2 to 60 kbar in primitive natural lherzolites. Geochim Cosmochim Ac 54:2375–2388CrossRefGoogle Scholar
  42. Kopylova MG, Caro G (2004) Mantle xenoliths from the southeastern Slave Craton: evidence for chemical zonation in a thick, cold lithosphere. J Petrol 45(5):1045–1067CrossRefGoogle Scholar
  43. Li C, Ripley EM (2010) The relative effects of composition and temperature on olivine-liquid Ni partitioning: statistical deconvolution and implications for petrologic modeling. Chem Geol 275:99–104CrossRefGoogle Scholar
  44. Lucas H, Ramsay RR, Hall AE, Smith CB, Sobolev NV (1989) Garnets from Western Australia kimberlites and related rocks. In: Ross J et al (eds) Kimberlites and related rocks: their crust/mantle setting, diamonds and diamond exploration, Geol Soc Aust spec Publ 14 vol 2, Carlton, pp 809–−819Google Scholar
  45. Luguet A, Jaques AL, Pearson DG, Smith CB, Bulanova G, Carter G, Roffey S, Rayner MJ, Lorand J-P (2009) An integrated petrological, geochemical and Re-Os isotope study of peridotite xenoliths from the Argyle lamproite, Western Australia and implications for cratonic diamond occurrences. Lithos 112S:1096–1108CrossRefGoogle Scholar
  46. Mather K, Pearson DG, McKenzie D, Kjarsgaard BA, Priestley K (2011) Constraints on the depth and thermal history of cratonic lithosphere from peridotite xenoliths, xenocrysts and seismology. Lithos 125:729–742CrossRefGoogle Scholar
  47. McCulloch M, Jaques AL, Nelson D, Lewis J (1983) Nd and Sr isotopes in kimberlites and lamproites from Western Australia: an enriched mantle origin. Nature 302:400–403CrossRefGoogle Scholar
  48. Mitchell RH (1986) Kimberlites: mineralogy, petrology and geochemistry. Plenum Press, New York, 442 ppCrossRefGoogle Scholar
  49. Mitchell RH, Bergman SC (1991) Petrology of lamproites. Plenum Press, New York, 447 ppCrossRefGoogle Scholar
  50. Moore AE (2017) Quantitative modelling of the apparent decoupling of Mg# and Ni in kimberlitic olivine margins: Comment on Cordier et al. (J Petrol 56:1775–1796, 2015). J Petrol 58:385–390CrossRefGoogle Scholar
  51. Murphy DR, Collerson KD, Kamber BS (2002) Lamproties from Gaussberg, Antartica: possible transition zone melt of Archaean subducted sediments. Contrib Mineral Petr 43:981–1001Google Scholar
  52. Nelson DR (1992) Isotopic characteristics of potassic rocks: evidence for the involvement of subducted sediments in magma genesis. Lithos 28:403–420CrossRefGoogle Scholar
  53. Nelson DR, McCulloch MT, Sun S-S (1986) The origins of ultrapotassic rocks as inferred from Sr, Nd and Pb isotopes. Geochim Cosmochim Ac 50:231–245CrossRefGoogle Scholar
  54. Nickel KG, Green DH (1985) Empirical geothermobarometry for garnet peridotites and implications for the nature of the lithosphere, kimberlites and diamonds. Earth Planet Sc Lett 73:158–170CrossRefGoogle Scholar
  55. Nimis P, Taylor WR (2000) Single clinopyroxene thermobarometry for garnet peridotites. Part I. Calibration and testing of a Cr-in-Cpx barometer and an enstatite-in-Cpx thermometer. Contrib Mineral Petr 139:541–554CrossRefGoogle Scholar
  56. Novella D, Frost DJ (2014) The composition of hydrous partial melts of garnet peridotite at 6 Gpa: implications for the origin of Group II kimberlites. J Petrol 55:2097–2124CrossRefGoogle Scholar
  57. Paton C, Hellstrom J, Bence P, Woodhead J, Hergt J (2011) Iolite: freeware for the visualization and processing of mass spectrometric data. J Anal At Spectrom 26:2508–2518CrossRefGoogle Scholar
  58. Pearson DG, Wittig N (2014) The formation and evolution of cratonic mantle lithosphere – evidence from mantle xenoliths. In: Holland H, Turekian K (eds) Treatise on geochemistry, 2nd edn. Elsevier, Amsterdam, pp 255–292CrossRefGoogle Scholar
  59. Pearson DG, Canil D, Shirey SB (2003) Mantle samples included in volcanic rocks: xenoliths and diamonds. In: Carlson RW (ed) Treatise on geochemistry, vol 2, the mantle and core. Elsevier Amsterdam, pp 171–276Google Scholar
  60. Peltonen P, Huhma H, Tyni M, Shimizu N (1999) Garnet peridotite xenoliths from kimberlites of Finland: nature of the continental mantle at an Archean craton ─ Proterozoic mobile belt transition. In: Gurney JJ, Richardson SR (eds) Proceedings of the 7th International Kimberlite Conference, The PH Nixon Volume, vol 2. Red Roof Design, Cape Town, pp 664–676Google Scholar
  61. Prelević D, Foley SF (2007) Accretion of arc-oceanic lithospheric mantle in the Mediterranean: evidence from extremely high-Mg olivines and Cr-rich spinel inclusions from lamproites. Earth Planet Sc Lett 256:120–135CrossRefGoogle Scholar
  62. Prelević D, Stracke A, Foley SF, Romer RL, Conticelli S (2010) Hf isotope compositions of Mediterranean lamproites: mixing of melts from asthenosphere and crustally contaminated mantle lithosphere. Lithos 119:297–312CrossRefGoogle Scholar
  63. Prelević D, Akal C, Foley SF, Romer RL, Stracke A, van den Bogaard P (2012) Ultrapotassic mafic rocks as geochemical proxies for post-collisional dynamics of orogenic lithospheric mantle: the case of southwestern Anatolia, Turkey. J Petrol 53:1019–1055Google Scholar
  64. Prelević D, Jacob DE, Foley SF (2013) Recycling plus: a new recipe for the formation of Alpine-Himalayan orogenic mantle lithosphere. Earth Planet Sc Lett 362:187–197CrossRefGoogle Scholar
  65. Prider RT (1982) A glassy lamproite from the West Kimberley area, Western Australia. Mineral Mag 45:279–282CrossRefGoogle Scholar
  66. Rapp RP, Irifune T, Shimizu N, Nishiyama N, Norman MD, Inoue T (2008) Subduction recycling of continental sediments and the origin of geochemically enriched reservoirs in the deep mantle. Earth Planet Sc Lett 271:14–23CrossRefGoogle Scholar
  67. Sato K (1997) Melting experiments on a synthetic olivine lamproite composition up to 8 GPa; implication to its petrogenesis. J Geophys Res_Solid 102:14751–14764CrossRefGoogle Scholar
  68. Selway K (2014) On the causes of electrical conductivity anomalies in tectonically stable lithosphere. Surv Geophys 35:219–257CrossRefGoogle Scholar
  69. Smit KV, Shirey SH, Richardson SH, le Roex AP, Gurney JJ (2010) Re–Os isotopic composition of peridotitic sulphide inclusions in diamonds from Ellendale, Australia: age constraints on Kimberley cratonic lithosphere. Geochim Cosmochim Ac 74:3292–3306Google Scholar
  70. Sobolev AV, Sobolev NV, Smith CB, Dubessy J (1989) Fluid and melt compositions in lamproites and kimberlites based on the study of inclusions in olivine. In: Ross J et al (eds) Kimberlites and related rocks: their composition, occurrence, origin and emplacement, Geol Soc Aust spec Publ 14 vol 1. Blackwells, Carlton, pp 220–240Google Scholar
  71. Sobolev AV, Hofmann AW, Sobolev NV, Nikogosian IK (2005) An olivine-free mantle source of Hawaiian shield basalts. Nature 434:590–597CrossRefGoogle Scholar
  72. Sobolev AV, Hofmann AW, Kuzmin DH, Yaxley GM et al (2007) The amount of recycled crust in sources of mantle-derived melts. Science 316:412–417CrossRefGoogle Scholar
  73. Sobolev NV, Logvinova AM, Zedgenizov DA, Pokhilenko NP, Malygina EV, Kuzmin DV, Sobolev AV (2009) Petrogenetic significance of minor elements in olivines from diamonds and peridotite xenoliths from kimberlites of Yakutia. Lithos 112S:701–713CrossRefGoogle Scholar
  74. Stachel T, Brey G (1993) Spinels in the Ellendale olivine lamproites (Western Australia): significance for diamond distribution and emplacement history. Neues Jb Miner Abh 165:155–167Google Scholar
  75. Stachel T, Lorenz V, Smith CB, Jaques AL (1994) Volcanology and geochemistry of the Ellendale Lamproite Field, (Western Australia). In: Meyer HOA, Leonardos OH (eds) Kimberlites, related rocks, and mantle xenoliths. Companhia de Pesquisa de Recursos Minerais Spec Publ Jan/94, vol 1, Brasilia, pp 177–194Google Scholar
  76. Taylor WR (1998) An experimental test of some geothermometer and geobarometer formulations for upper mantle peridotites with application to the thermobarometry of fertile lherzolite and garnet websterite. Neues Jb Miner Abh 172:381–408Google Scholar
  77. Veter M, Foley SF, Mertz-Kraus R, Groschopf N (2017) Trace elements in olivine of ultramafic lamprophyres controlled by phlogopite-rich mineral assemblages in the mantle source. Lithos:81–95Google Scholar
  78. Walter MJ (1998) Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. J Petrol 39:29–60CrossRefGoogle Scholar
  79. Wang L, Hitchman AP, Ogawa Y, Siripunvaraporn W, Ichiki M, Fuji-ta K (2014) A 3-D conductivity model of the Australian continent using observatory and magnetometer array data. Geophys J Int 98:1143–1158CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Research School of Earth SciencesAustralian National UniversityActonAustralia
  2. 2.ARC Centre of Excellence for Core to Crust Fluid Systems (CCFS) and Department of Earth and Planetary SciencesMacquarie UniversityNorth RydeAustralia

Personalised recommendations