Mineralogy and Petrology

, Volume 112, Supplement 1, pp 85–100 | Cite as

Origin of zircon-bearing mantle eclogites entrained in the V. Grib kimberlite (Arkhangelsk region, NW Russia): Evidence from mineral geochemistry and the U-Pb and Lu-Hf isotope compositions of zircon

  • Elena V. ShchukinaEmail author
  • Alexey M. Agashev
  • Dmitry A. Zedgenizov
Original Paper


The concentrations of major and trace elements in minerals, reconstructed whole-rock compositions of zircon-bearing equigranular eclogites from the V. Grib kimberlite pipe located within the Arkhangelsk Diamondiferous Province (North-Western Russia), and results of the U-Pb and Lu-Hf isotope analyses of zircon grains from eclogites and granulite xenoliths are reported. These data suggest that the equigranular eclogites could represent the fragments of mid-ocean-ridge basalt that were metamorphosed during Paleoproterozoic subduction at 1.7–1.9 Ga. The Hf isotope compositions of the eclogitic zircon display uniformity and indicate corresponding Hf-depleted mantle model ages of 2.2–2.3 Ga. The formation of zircon in eclogites could have resulted from interactions with metasomatic/subduction-related fluids just prior to, but associated with, Paleoproterozoic eclogite formation. A link between eclogitic zircon formation and continental lower-crustal rocks can be excluded based on differences in the Hf isotope compositions of eclogitic and granulitic zircon grains. The U-Pb upper intercept age of granulitic zircon of 2716 ± 61 Ma provides a new minimum age constraint for zircon crystallisation and granulite formation. The U-Pb ages obtained from granulitic zircon show two stages of Pb loss at 2.2–2.6 Ga and 1.7–2.0 Ga. The late Paleoproterozoic stage of Pb loss recorded in granulitic zircon is due to the intensive reworking of basement crustal rocks, which was caused by a tectonic process/subduction event associated with equigranular eclogite formation. Our data, along with evidence previously obtained from the V. Grib pipe coarse-granular eclogites, show at least two main subduction events in the lithospheric mantle of the Arkhangelsk region: the Archean (2.8 Ga) and Paleoproterozoic (1.7–1.9 Ga) subductions, which correspond to major magmatic and metamorphic events in the Baltic Shield.


Zircon-bearing eclogites Archean and Paleoproterozoic subduction Hf isotopes Kimberlite 



The authors thank Vladimir N. Korolyuk, Larisa V. Usova, and Stanislav V. Palessky (Analytical Centre for multi-element and isotope research Institute Geology and Mineralogy Siberian Branch Russian Academy of Science) for their kind assistance in EMPA and LA-ICP-MS analyses, Sergey G. Simakin (Yaroslavl Branch of the Physical–Technological Institute of Russian Academy of Science) for zircon SIMS study, Elena A. Belousova (GEMOC Key Centre, Macquarie University, Australia) for zircon LA-ICP-MS U-Pb and Lu-Hf isotope analyses. This manuscript has benefited from the helpful comments of Thomas Stachel, reviewer Qiao Shu, an anonymous reviewer, and editor Jingao Liu. This work was supported by the Russian Science Foundation under grant no. 16-17-10067.

Supplementary material

710_2018_581_MOESM1_ESM.xlsx (91 kb)
ESM 1 (XLSX 91 kb)
710_2018_581_MOESM2_ESM.xlsx (31 kb)
ESM 2 (XLSX 30 kb)
710_2018_581_MOESM3_ESM.xlsx (1.1 mb)
ESM 3 (XLSX 1138 kb)
710_2018_581_MOESM4_ESM.xlsx (23 kb)
ESM 4 (XLSX 22 kb)


  1. Aoki KI, Shiba I (1973) Pyroxenes from lherzolite inclusions of Itiome-gata, Japan. Lithos 6:41–51CrossRefGoogle Scholar
  2. Aulbach S, Viljoen KS (2015) Eclogite xenoliths from the Lace kimberlite, Kaapvaal craton: from convecting mantle source to palaeo-ocean floor and back. Earth Planet Sc Lett 431:274–286CrossRefGoogle Scholar
  3. Aulbach S, Stachel T, Viljoen KS, Brey GP, Harris JW (2002) Eclogitic and websteritic diamond sources beneath the Limpopo Belt—is slab-melting the link? Contrib Mineral Petr 143:56–70CrossRefGoogle Scholar
  4. Aulbach S, Gerdes A, Viljoen KS (2016) Formation of diamondiferous kyanite–eclogite in a subduction meґlange. Geochim Cosmochim Ac 179:156–176CrossRefGoogle Scholar
  5. Bach W, Alt JC, Niu Y, Humphris SE, Erzinger J, Dick HJB (2001) The geochemical consequences of late-stage low-grade alteration of lower ocean crust at the SW Indian Ridge: results from ODP Hole 735B (Leg 176). Geochim Cosmochim Ac 65:3267–3287CrossRefGoogle Scholar
  6. Beard AD, Downes H, Hegner E, Sablukov SM, Vetrin VR, Balogh K (1998) Mineralogy and geochemistry of Devonian ultramafic minor intrusions of the southern Kola Peninsula, Russia: implications for the petrogenesis of kimberlites and melilitites. Contrib Mineral Petr 130(3–4):288–303CrossRefGoogle Scholar
  7. Beard AD, Downes H, Hegner E, Sablukov SM (2000) Geochemistry and mineralogy of kimberlites from the Arkhangelsk Region, NW Russia: evidence for transitional kimberlite magma types. Lithos 51:47–73CrossRefGoogle Scholar
  8. Belousova EA, Griffin WL, Shee SR, Jackson SE, O’Reilly SY (2001) Two age populations of zircons from the Timber Creek Kimberlites, Northern Territory, as determined by laser-ablation ICPMS. Aust J Earth Sci 48:757–765CrossRefGoogle Scholar
  9. Bibikova EV, Bogdanova SV, Glebovitsky VA, Claesson S, Skio¨ld T (2004) Evolution of the Belomorian belt: NORDSIM UPb zircon dating of the Chupa paragneisses, magmatism, and metamorphic stages. Petrology 12:195–210Google Scholar
  10. Bogatikov OA, Garanin VK, Kononova VA, Kudryavceva GP, Vasil’eva ER, Verzhak VV, Verichev EM, Parsadanyan KS, Posuhova TV (1999) Arkhangelsk diamondiferous province, Moscow State University, 521 pp (in Russian)Google Scholar
  11. Boullier AM, Nicolas A (1975) Classification of textures and fabrics of peridotite xenoliths from South African kimberlites. Phys Chem Earth 9:467–475CrossRefGoogle Scholar
  12. Brey GP, Kohler T (1990) Geothermobarometry in four-phase lherzolites II. New thermobarometers and practical assessment of existing thermobarometers. J Petrol 31:1353–1378CrossRefGoogle Scholar
  13. Chen YD, O’Reilly SY, Kinny PD, Griffin WL (1994) Dating lower crust and upper mantle events: an ion microprobe study of xenoliths from kimberlitic pipes, South Australia. Lithos 32:77–94CrossRefGoogle Scholar
  14. De Stefano A, Kopylova MG, Cartigny P, Afanasiev VP (2009) Diamonds and eclogites of the Jericho kimberlite (Northern Canada). Contrib Mineral Petr 158:295–315CrossRefGoogle Scholar
  15. Ellis DJ, Green DH (1979) An experimental study of the effect of Ca upon garnet-clinopyroxene Fe–Mg exchange equilibria. Contrib Mineral Petr 71:13–22CrossRefGoogle Scholar
  16. Gillis KM, Snow JE, Klaus A, Abe N et al (2013) Primitive layered gabbros from fast-spreading lower oceanic crust. Nature 505:204–207CrossRefGoogle Scholar
  17. Glebovitskii VA, Baltybaev SK, Levchenkov OA, Kuzmina EV (2009) Thermodynamic regime of Svecofennian (1.9 Ga) metamorphism of the Umba nappe of the Lapland collisional orogen. Petrology 17:331–351CrossRefGoogle Scholar
  18. Godard M, Awaji S, Hansen H, Hellebrand E, Brunelli D, Johnson K, Yamasaki T, Maeda J, Abratis M, Christie D, Kato Y, Mariet C, Rosner M, (2009) Geochemistry of a long in-situ section of intrusive slow-spread oceanic lithosphere: Results from IODP Site U1309 (Atlantis Massif, 30°N Mid-Atlantic-Ridge). Earth and Planetary Science Letters 279 (1-2):110-122Google Scholar
  19. Griffin WL, Pearson NJ, Belousova EA, Jackson SE, van Achterbergh E, O’Reilly SY, Shee SR (2000) The Hf isotope compositions of cratonic mantle: LAM-ICP-MS analysis of zircon megacrysts in kimberlites. Geochim Cosmochim Ac 64:133–147CrossRefGoogle Scholar
  20. Griffin WL, Belousova EA, Shee SR, Pearson NJ, O’Reilly SY (2004) Archean crustal evolution in the northern Yilgarn Craton: U-Pb and Lu-Hf-isotope evidence from detrital zircons. Precambrian Res 131:231–282CrossRefGoogle Scholar
  21. Grimes CB, John BE, Cheadle MJ, Mazdab FK, Wooden JL, Swapp S, Schwartz JJ (2009) On the occurrence, trace-element geochemistry, and crystallization history of zircon from in situ ocean lithosphere. Contrib Mineral Petr 158:757CrossRefGoogle Scholar
  22. Heaman LM, Creaser RA, Cookenboo HO (2002) Extremly enrichment of high field strength elements in Jericho eclogite xenoliths: A cryptic record of Paleoproterozoic subduction, partial melting, and metasomatism beneath the Slave craton, Canada. Geology 30(6):507–510CrossRefGoogle Scholar
  23. Heaman LM, Creaser RA, Cookenboo HO, Chacko T (2006) Multi-stage modifcation of the Northern slave mantle lithosphere: evidence from zircon-and diamond-bearing eclogite xenoliths entrained in Jericho kimberlite. Canada J Pet 47:821–858CrossRefGoogle Scholar
  24. Hinton RW, Upton BGJ (1991) The chemistry of zircon: variations within and between large crystals from syenite and alkali basalt xenoliths. Geochim Cosmochim Ac 55:3287–3302CrossRefGoogle Scholar
  25. Hoffman AW (1988) Chemical differentiation of the earth: the relationship between mantle, continental crust and oceanic crust. Earth Planet Sc Lett 90:297–314CrossRefGoogle Scholar
  26. Hoskin PWO, Schaltegger U (2003) The composition of zircon and igneous and metamorphic petrogenesis. Geochim Cosmochim Ac 53:27–62Google Scholar
  27. Jackson SE, Pearson NJ, Griffin WL, Belousova EA (2004) The application of laser ablation microprobe-inductively coupled plasma-mass spectrometry (LAM-ICP-MS) to in-situ U-Pb zircon geochronology. Chem Geol 211:47–69CrossRefGoogle Scholar
  28. Jacob DE (2004) Nature and origin of eclogite xenoliths from kimberlites. Lithos 77(1–4):295–316CrossRefGoogle Scholar
  29. Kaczmarek MA, Muntener O, Rubatto D (2008) Trace-element chemistry and U-Pb dating of zircons from oceanic gabbros and their relationship with whole-rock composition (Lanzo, Italian Alps). Contrib Mineral Petr 155(3):295–312CrossRefGoogle Scholar
  30. Kargin AV, Sazonova LV, Nosova AA, Tretyachenko VV (2016) Composition of garnet and clinopyroxene in peridotite xenoliths from the Grib kimberlite pipe, Arkhangelsk diamond province, Russia: evidence for mantle metasomatism associated with kimberlite melts. Lithos 262:442–455CrossRefGoogle Scholar
  31. Kargin AV, Sazonova LV, Nosova AA, Pervov VA, Minevrina EV, Khvostikov VA, Burmii ZP (2017) Sheared peridotite xenolith from the V. Grib kimberlite pipe, Arkhangelsk Diamond Province, Russia: texture, composition, and origin. Geosci Front 8:653–669CrossRefGoogle Scholar
  32. Kinny PD, Compston W, Bristow JW, Williams IS (1989) Archean mantle xenocrysts in a Permian kimberlite: two generations of kimberlitic zircon in Jwaneng DK2, southern Botswana. In: Ross J (ed) Kimberlites and related rocks: their mantle/crustal setting, diamonds and diamond exploration. Proceedings of the Fourth International Kimberlite Conference, vol 2. Geological Society of Australia Special Publication vol 14, pp 833–842Google Scholar
  33. Kononova VA, Golubeva YY, Bogatikov OA, Kargin AV (2007) Diamond resource potential of kimberlites from the Zimny Beregfield, Arkhangel'sk oblast. Geol Ore Deposit 49:421–441CrossRefGoogle Scholar
  34. Koreshkova MY, Downes H, Glebovitsky VA, Rodionov NV, Antonov AV, Sergeev SA (2014) Zircon trace element characteristics and ages in granulite xenoliths; a key to understanding the age and origin of the lower crust, Arkhangelsk kimberlite province, Russia. Contrib Mineral Petr 167:973CrossRefGoogle Scholar
  35. Kostrovitsky SI, Malkovets VG, Verichev EM, Garanin VK, Suvorova LV (2004) Megacrysts from the Grib kimberlite pipe (Arkhangelsk Province, Russia). Lithos 77:511–523CrossRefGoogle Scholar
  36. Kresten P, Fels P, Berggren G (1975) Kimberlitic zircons – a possible aid in prospecting for kimberlites. Mineral Deposita 10:47–56CrossRefGoogle Scholar
  37. Lavrent’ev YG, Korolyuk VN, Usova LV, Nigmatulina EN (2015) Electron probe microanalysis of rock-forming minerals with a JXA-8100 electron probe microanalyzer. Russ Geol Geophys 56:1428–1436CrossRefGoogle Scholar
  38. Le Roux PS, le Roux AP, Schilling JG (2002) Crystallization processes beneath the southern Mid-Atlantic Ridge (40 – 55 ° S), evidence for high-pressure initiation of crystallization. Contrib Mineral Petr 142:582–602CrossRefGoogle Scholar
  39. Ludwig KR (1992) ISOPLOT – a plotting and regression program for radiogenic isotope data, version 2.57. US Geological Survey Open-File Report 91:445Google Scholar
  40. MacGregor ID, Manton WI (1986) Roberts Victor eclogites: ancient oceanic crust. J Geophys Res 91(B14):14063–14079CrossRefGoogle Scholar
  41. Mahotkin IL, Gibson SA, Thompson RN, Zhuravlev DZ, Zherdev PU (2000) Late Devonian diamondiferous kimberlite and alkaline picrite (proto-kimberlite?) magmatism in the Arkhangelsk region, Russia. J Petrol 41(2):201–227CrossRefGoogle Scholar
  42. McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120:223–253CrossRefGoogle Scholar
  43. Mints MV, Dokukina KA, Konilov AN (2014) The Meso-Neoarchaean Belomorian eclogite province: Tectonic position and geodynamic evolution. Gondwana Res 25:561–584CrossRefGoogle Scholar
  44. Nikitina LP, Korolev NM, Zinchenko VN, Felix JT (2014) Eclogites from the upper mantle beneath the Kasai Craton (Western Africa): Petrography, whole-rock geochemistry and U-Pb zircon age. Precambrian Res 249:13–32CrossRefGoogle Scholar
  45. Norman MD, Pearson NJ, Sharma A, Griffin WL (1996) Quantitative analysis of trace-elements in geological materials by laser ablation ICPMS: instrumental operating conditions and calibration values of NIST glasses. Geostand Newslett 20:247–261CrossRefGoogle Scholar
  46. Nowell GM, Kempton PD, Noble SR, Fitton JG, Saunders AD, Mahoney JJ, Taylor RN (1998) High precision Hf isotope measurements of MORB and OIB by thermal ionization mass spectrometry:insighs into the depleted mantle. Chem Geol 149:211–233CrossRefGoogle Scholar
  47. O’Brien H, Bradley J (2008) New kimberlite discoveries in Kuusamo, northern Finland. Extended Abstracts of the 9th International Kimberlite Conference, 9IKC–A–00346Google Scholar
  48. O’Brien HE, Peltonen P, Vartiainen H (2005) Kimberlites, carbonatites and alkaline rocks. In: Lehtninen M, Nurmi PA, Rämö OT (eds) Precambrian geology of Finland. Elsevier, Amsterdam, pp 605–644CrossRefGoogle Scholar
  49. O’Brien H, Phillips D, Spencer R (2007) Isotopic ages of Lenti-ira-Kuhmo-Kostomuksha olivine lamproite-Group II kimber-lites. B Geol Soc Finland 79:203–215CrossRefGoogle Scholar
  50. O'Hara MJ, Yoder HS (1967) Formation and fractionation of basic magmas at high pressures. Scott J Geol 3:67–117CrossRefGoogle Scholar
  51. Parsadanyan KS, Kononova VA, Bogatikov OA (1996) The sources of heterogeneous magmatism in the Arkhangelsk diamondiferous province. Petrologiya 4(5):496–517Google Scholar
  52. Pernet-Fisher JF, Howarth GH, Liu Y, Barry PH, Carmody L, Valley JW, Bodnar RJ, Spetsius ZV, Taylor LA (2014) Komsomolskaya diamondiferous eclogites: evidence for oceanic crustal protoliths. Contrib Mineral Petr 167:981CrossRefGoogle Scholar
  53. Polat A, Frei R, Appel PWU, Dilek Y, Fryer B, Ordonez-Calderon JC, Yang Z (2008) The origin and compositions of Mesoarchean oceanic crust: Evidence from the 3075 Ma Ivisaartoq greenstone belt, SW Greenland. Lithos 100:293–321CrossRefGoogle Scholar
  54. Priyatkina N, Khudoley AK, Ustinov VN, Kullerud K (2014) 1.92 Ga kimberlitic rocks from Kimozero, NW Russia: Their geochemistry, tectonic setting and unusual field occurrence. Precambrian Res 249:162–179CrossRefGoogle Scholar
  55. Rubatto D (2002) Zircon trace element geochemistry: partitioning with garnet and the link between U-Pb ages and metamorphism. Chem Geol 184:123–138CrossRefGoogle Scholar
  56. Rudnick RL, Ireland TR, Gehrels G, Irving AJ, Chesley JT, Hanchar JM (1999) Dating mantle metasomatism: U-Pb geochronology of zircons in cratonic mantle xenoliths from Montana and Tanzania. In: Gurney JJ, Gurney JL, Pascoe MD, Richardson SH (eds) The P.H. Nixon Volume, Proceedings of the VIIth International Kimberlite Conference. Red Roof Design, pp 728–735Google Scholar
  57. Samsonov AV, Nosova AA, Tretyachenko VV, Larchenko VA, Larionova YO (2009) Collisional Sutures in the Early Precambrian Crust as a Factor Responsible for Localization of Diamondiferous Kimberlites in the Northern East European Platform. Dokl Earth Sci 425(2):226–230CrossRefGoogle Scholar
  58. Scherer E, Munker C, Mezger K (2001) Calibration of the lutetium-hafnium clock. Science 293:683–687CrossRefGoogle Scholar
  59. Schmickler B, Jacob DE, Foley SF (2004) Eclogite xenoliths from the Kuruman kimberlites, South Africa: geochemical fingerprinting of deep subduction and cumulate processes. Lithos 75:173–207CrossRefGoogle Scholar
  60. Schmidberger SS, Heaman LM, Simonetti A, Creaser RA, Cookenboo HO (2005) Formation of Paleoproterozoic eclogitic mantle, Slave Province (Canada): Insights from in-situ Hf and U-Pb isotopic analyses of mantle zircons. Earth Planet Sc Lett 240:621–633CrossRefGoogle Scholar
  61. Schmitz M, Shirey S, Carlson R (2003) High-precision U-Pb geochronology and Lu-Hf isotopic systematics of zircons in southern African cratonic mantle eclogites and implications for subcontinental lithospheric mantle evolution and metaqsomatism. Extended Abstracts, 8th International Kimberlite Conference, Victoria, B.C., 1 pGoogle Scholar
  62. Shchukina EV, Golovin NN, Malkovets VG, Pokhilenko NP (2012) Mineralogy and equilibrium P-T estimates for peridotite assemblages from the V. Grib kimberlite pipe (Arkhangelsk Kimberlite Province). Dokl Earth Sci 444(2):776–781CrossRefGoogle Scholar
  63. Shchukina EV, Agashev AM, Golovin NN, Pokhilenko NP (2015a) Equigranular Eclogites from the V. Grib Kimberlite Pipe: Evidence for Paleoproterozoic Subduction on the Territory of the Arkhangelsk Diamondiferous Province. Dokl Earth Sci 462(1):497–501CrossRefGoogle Scholar
  64. Shchukina EV, Agashev AM, Kostrovitsky SI, Pokhilenko NP (2015b) Metasomatic processes in the lithospheric mantle beneath the V. Grib kimberlite pipe (Arkhangelsk diamondiferous province). Russ Geol Geophys 56(12):1701–1716CrossRefGoogle Scholar
  65. Shchukina EV, Agashev AM, Pokhilenko NP (2017a) Metasomatic origin of garnet xenocrysts from the V. Grib kimberlite pipe, Arkhangelsk region, NW Russia. Geosci Front 8:641–651CrossRefGoogle Scholar
  66. Shchukina EV, Agashev AM, Soloshenko NG, Streletskaya MV, Zedgenizov DA, Shchukin VS, Pokhilenko NP (2017b) Origin of coarse-granular and equigranular eclogites from V. Grib kimberlite pipe, Arkhangelsk region, NW Russia. 11-th International Kimberlite conference, Extended Abstracts No. 11IKC-4456Google Scholar
  67. Shevchenko SS, Lokhov KI, Sergeev SA (2004) Isotope studies in VSEGEI. Prospects of application of results for predicting and search of diamond deposits. In: Proceedings of Scientific Practical Conference on Efficiency of Prediction and Search for Diamond Deposits: Past, Present, and Future, St. Petersburg, pp 383–387Google Scholar
  68. Smart KA, Heaman LM, Chacko T, Simonetti A, Kopylova M, Mah D, Daniels D (2009) The origin of high-MgO diamond eclogites from the Jericho Kimberlite. Canada. Earth Planet Sc Lett 284:527–537CrossRefGoogle Scholar
  69. Smart KA, Chacko T, Simonetti A, Sharp ZD, Heaman LM (2014) Record of Paleoproterozoic Subduction Preserved in the Northern Slave Cratonic Mantle: Sr–Pb–O Isotope and Trace-element Investigations of Eclogite Xenoliths from the Jericho and Muskox Kimberlites. J Petrol 55(3):549–583CrossRefGoogle Scholar
  70. Smit KV, Shor R (2017) Geology and development of the Lomonosov diamond deposit, Northwestern Russia. Gems Gemol 53(2):144–167Google Scholar
  71. Smit KV, Stachel T, Creaser RA, Ickert RB, DuFrane SA, Stern SA, Seller M (2014) Origin of eclogite and pyroxenite xenoliths from the Victor kimberlite, Canada, and implications for Superior craton formation. Geochim Cosmochim Ac 125:308–337CrossRefGoogle Scholar
  72. Smyth JR, Caporuscio FA, McCormick T (1989) Mantle eclogites: evidence of igneous fractionation in the mantle. Earth Planet Sc Lett 93:133–141CrossRefGoogle Scholar
  73. Taylor LA, Neal CR (1989) Eclogites with oceanic crustal and mantle signatures from the Bellsbank kimberlite, South Africa, Part I: mineralogy, petrography, and whole rock chemistry. J Geol 97:551–567CrossRefGoogle Scholar
  74. Taylor LA, Snyder GA, Keller R, Remley DA, Anand M, Wiesli R, Valley J, Sobolev NV (2003) Petrogenesis of group A eclogites and websterites; evidence from the Obnazhennaya Kimberlite, Yakutia. Contrib Mineral Petr 145(4):424–443CrossRefGoogle Scholar
  75. Watson EB, Wark DA, Thomas JB (2006) Crystallisation thermometers for zircon and rutile. Contrib Mineral Petr 151:413–433CrossRefGoogle Scholar
  76. Zhao G, Cawood PA, Wilde SA, Sun M (2002) Review of global 2.1 – 1.8 Ga orogens: implications for a pre – Rodinia supercontinent. Earth-Sci Rev 59(1–4):125–162CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Elena V. Shchukina
    • 1
    • 2
    Email author
  • Alexey M. Agashev
    • 1
  • Dmitry A. Zedgenizov
    • 1
    • 2
  1. 1.Sobolev Institute of Geology and MineralogySiberian Branch Russian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations