Mineralogy and Petrology

, Volume 112, Supplement 2, pp 609–624 | Cite as

The P3 kimberlite and P4 lamproite, Wajrakarur kimberlite field, India: mineralogy, and major and minor element compositions of olivines as records of their phenocrystic vs xenocrystic origin

  • Azhar M. ShaikhEmail author
  • Satya P. Kumar
  • Suresh C. Patel
  • Satyajeet S. Thakur
  • Subramanian Ravi
  • Duryadhan Behera
Original Paper


Distinctly different groundmass mineralogy characterise the hypabyssal facies, Mesoproterozoic diamondiferous P3 and P4 intrusions from the Wajrakarur Kimberlite Field, southern India. P3 is an archetypal kimberlite with macrocrysts of olivine and phlogopite set in a groundmass dominated by phlogopite and monticellite with subordinate amounts of serpentine, spinel, perovskite, apatite, calcite and rare baddeleyite. P4 contains mega- and macrocrysts of olivine set in a groundmass dominated by clinopyroxene and phlogopite with subordinate amounts of serpentine, spinel, perovskite, apatite, and occasional gittinsite, and is mineralogically interpreted as an olivine lamproite. Three distinct populations of olivine, phlogopite and clinopyroxene are recognized based on their microtextural and compositional characteristics. The first population includes glimmerite and phlogopite–clinopyroxene nodules, and Mg-rich olivine macrocrysts (Fo 90–93) which are interpreted to be derived from disaggregated mantle xenoliths. The second population comprises macrocrysts of phlogopite and Fe-rich olivine (Fo 81–89) from P3, megacrysts and macrocrysts of Fe-rich olivine (Fo 85–87) from P4 and a rare olivine–clinopyroxene nodule from P4 which are suggested to have a genetic link with the precursor melt of the respective intrusions. The third population represents clearly magmatic minerals such as euhedral phenocrysts of Fe-rich olivine (Fo 85–90) crystallised at mantle depths, and olivine overgrowth rims formed contemporaneously with groundmass minerals at crustal levels. Close spatial association and contemporaneous emplacement of P3 kimberlite and P4 lamproite is explained by a unifying petrogenetic model which involves the interaction of a silica-poor carbonatite melt with differently metasomatised wall rocks in the lithospheric mantle. It is proposed that the metasomatised wall rock for lamproite contained abundant MARID-type and phlogopite-rich metasomatic veins, while that for kimberlite was relatively refractory in nature.


Kimberlite Lamproite Olivine Wajrakarur India Xenocrysts 



We are grateful to Geoffrey Howarth and Lynton Jaques for their detailed and valuable comments. Andrea Giuliani is thanked for editorial handling. The Department of Science and Technology, Government of India, provided the financial support (grant no. IR/S4/ESF-16/2009) for establishing the EPMA National Facility, Indian Institute of Technology Bombay, under the Intensification of Research in High Priority Areas (IRPHA) scheme.

Supplementary material

710_2018_562_MOESM1_ESM.docx (31 kb)
Supplementary material 1 (DOCX 30 KB)
710_2018_562_MOESM2_ESM.docx (15 kb)
Supplementary material 2 (DOCX 14 KB)
710_2018_562_MOESM3_ESM.docx (35 kb)
Supplementary material 3 (DOCX 34 KB)
710_2018_562_MOESM4_ESM.xlsx (124 kb)
Supplementary material 4 (XLSX 124 KB)
710_2018_562_MOESM5_ESM.xlsx (138 kb)
Supplementary material 5 (XLSX 137 KB)
710_2018_562_MOESM6_ESM.xlsx (68 kb)
Supplementary material 6 (XLSX 67 KB)
710_2018_562_MOESM7_ESM.xlsx (38 kb)
Supplementary material 7 (XLSX 37 KB)
710_2018_562_MOESM8_ESM.xlsx (134 kb)
Supplementary material 8 (XLSX 134 KB)
710_2018_562_MOESM9_ESM.xlsx (20 kb)
Supplementary material 9 (XLSX 19 KB)
710_2018_562_MOESM10_ESM.xlsx (67 kb)
Supplementary material 10 (XLSX 67 KB)
710_2018_562_MOESM11_ESM.eps (18.1 mb)
Supplementary material 11 (EPS 18501 KB)
710_2018_562_MOESM12_ESM.eps (3.3 mb)
Supplementary material 12 (EPS 3331 KB)


  1. Akella J, Rao PS, McCallister RH, Boyd FR, Meyer HOA (1979) Mineralogical studies on the diamondiferous kimberlites of Wajrakarur area, south India. In: Boyd FR, Meyer HOA (eds) Kimberlites, diatremes and diamonds: their geology, petrology and geochemistry. Am Geophys Union vol 1, Washington D.C., pp 172–177Google Scholar
  2. Ammannati E, Jacob DE, Avanzinelli R, Foley SF, Conticelli S (2016) Low Ni olivine in silica-undersaturated ultrapotassic igneous rocks as evidence for carbonate metasomatism in the mantle. Earth Planet Sci Lett 444:64–74CrossRefGoogle Scholar
  3. Anil Kumar, Heaman LM, Manikyamba C (2007) Mesoproterozoic kimberlites in south India: a possible link to ~ 1.1 Ga global magmatism. Precambrian Res 154:192–204CrossRefGoogle Scholar
  4. Arndt NT, Guitreau M, Boullier AM, Le Roex A, Tommasi A, Cordier P, Sobolev A (2010) Olivine, and the origin of kimberlite. J Petrol 51:573–602CrossRefGoogle Scholar
  5. Brett RC, Russell JK, Moss S (2009) Origin of olivine in kimberlite: Phenocryst or impostor? Lithos 112:201–212CrossRefGoogle Scholar
  6. Brett RC, Russell JK, Andrews GDM, Jones TJ (2015) The ascent of kimberlite: insights from olivine. Earth Planet Sci Lett 424:119–131CrossRefGoogle Scholar
  7. Bussweiler Y, Foley SF, Prelevic D, Jacob DE (2015) The olivine macrocryst problem: new insights from minor and trace element compositions of olivine from Lac de Gras kimberlites. Canada Lithos 220:238–252CrossRefGoogle Scholar
  8. Carswell DA (1975) Primary and secondary phlogopites and clinopyroxenes in garnet lherzolite xenoliths. Phys Chem Earth 9:417–429CrossRefGoogle Scholar
  9. Chalapathi Rao NV, Gibson SA, Pyle DM, Dickin AP (2004) Petrogenesis of proterozoic lamproites and kimberlites from the cuddapah basin and Dharwar craton, southern India. J Petrol 45:907–948CrossRefGoogle Scholar
  10. Chalapathi Rao NV, Dongre A, Wu F-Y, Lehmann B (2016) A late cretaceous (ca. 90 Ma) kimberlite event in southern India: implication for sub-continental lithospheric mantle evolution and diamond exploration. Gondwana Res 35:378–389CrossRefGoogle Scholar
  11. Clement CR (1982) A comparative geologic study of some major kimberlite pipes in the Northern Cape and Orange Free State. Ph.D. Thesis. Department of Geology, University of Cape TownGoogle Scholar
  12. Cordier C, Sauzeat L, Arndt NT, Boullier AM, Batanova V, Barou F (2015) Metasomatism of the lithospheric mantle immediately precedes kimberlite eruption: new evidence from olivine composition and microstructures. J Petrol 56:1775–1796CrossRefGoogle Scholar
  13. Dawson JB, Smith JV (1975) Chemistry and origin of phlogopite megacrysts in kimberlite. Nature 253:336–338CrossRefGoogle Scholar
  14. Erlank AJ, Waters FG, Hawkesworth CJ, Haggerty SE, Allsopp HL, Rickard RS, Menzies MA (1987) Evidence for mantle metasomatism in peridotite nodules from the kimberlite pipes, South Africa. In: Menzies MA, Hawkesworth CJ (eds) Mantle metasomatism. Academic Press, London, pp 221–311Google Scholar
  15. Fedortchouk Y, Canil D (2004) Intensive variables in kimberlite magmas, Lac de Gras, Canada and implications for diamond survival. J Petrol 45:1725–1745CrossRefGoogle Scholar
  16. Foley SF, Jenner GA (2004) Trace element partitioning in lamproitic magmas — the Gaussberg olivine leucitite. Lithos 75:19–38CrossRefGoogle Scholar
  17. Foley SF, Prelevic D, Rehfeldt T, Jacob DE (2013) Minor and trace elements in olivines as probes into early igneous and mantle melting processes. Earth Planet Sci Lett 363:181–191CrossRefGoogle Scholar
  18. Ganguly J, Bhattacharya PK (1987) Xenoliths in Proterozoic kimberlites from southern India: petrology and geophysical implications. In: Nixon PH (ed) Mantle xenoliths. Wiley, p 249–265Google Scholar
  19. Giuliani A, Kamenetsky VS, Kendrick MA, Phillips D, Wyatt BA, Maas R (2013) Oxide, sulphide and carbonate minerals in a mantle polymict breccia: Metasomatism by proto-kimberlite magmas, and relationship to the kimberlite megacrystic suite. Chem Geol 353:4–18CrossRefGoogle Scholar
  20. Giuliani A, Phillips D, Kamenetsky VS, Kendrick MA, Wyatt BA, Goemann K, Hutchinson G (2014) Petrogenesis of mantle polymict breccias: insights into mantle processes coeval with kimberlite magmatism. J Petrol 55:831–858CrossRefGoogle Scholar
  21. Giuliani A, Phillips D, Woodhead JD et al (2015) Did diamond-bearing orangeites originate from MARID-veined peridotites in the lithospheric mantle? Nat Commun 6:6837CrossRefGoogle Scholar
  22. Giuliani A, Phillips D, Kamenetsky VS, Goemann K (2016) Constraints on kimberlite ascent mechanisms revealed by phlogopite compositions in kimberlites and mantle xenoliths. Lithos 240–243:189–201CrossRefGoogle Scholar
  23. Giuliani A, Soltys A, Phillips D et al (2017) The final stages of kimberlite petrogenesis: petrography, mineral chemistry, melt inclusions and Sr-C-O isotope geochemistry of the Bultfontein kimberlite (Kimberley, South Africa). Chem Geol 455:342–356CrossRefGoogle Scholar
  24. Gurmeet Kaur, Mitchell RH (2013) Mineralogy of P2-West ‘Kimberlite’, Wajrakarur kimberlite field, Andhra Pradesh, India:kimberlite or lamproite? Mineral Mag 77:3175–3196CrossRefGoogle Scholar
  25. Gurmeet Kaur, Mitchell RH (2016) Mineralogy of the P-12 K-Ti-richterite diopside olivine lamproite from Wajrakarur,Andhra Pradesh, India: implications for subduction-related magmatism in eastern India. Miner Petrol 110:223–245CrossRefGoogle Scholar
  26. Gurmeet Kaur, Korakoppa M, Fareeduddin, Pruseth KL (2013) Petrology of P-5 and P-13 ‘‘kimberlites’’ from Lattavaram kimberlite cluster, Wajrakarur Kimberlite Field, Andhra Pradesh,India: reclassification as lamproites. In: Pearson DG, Grutter HS, Harris JW et al.(eds) Proceedings of the 10th IKC, Spl Issue J Geol Soc India vol 1, Bangalore, pp 183–194Google Scholar
  27. Gurney JJ, Jakob WRO, Dawson JB (1979) Megacrysts from the Monastery kimberlite pipe, South Africa. ‘The mantle sample: inclusion in kimberlites and other volcanics’. Am Geol Union Washington D.C., p 227–243Google Scholar
  28. Hops JJ, Gurney JJ, Harte B (1992) The Jagersfontein Cr-Poor megacryst suite—towards a model for megacryst petrogenesis. J Volcanol Geotherm Res 50:143–160CrossRefGoogle Scholar
  29. Howarth GH, Taylor LA (2016) Multi-stage kimberlite evolution tracked in zoned olivine from the Benfontein sill, South Africa. Lithos 262:384–397CrossRefGoogle Scholar
  30. Kamenetsky VS, Yaxley GM (2015) Carbonate–silicate liquid immiscibility in the mantle propels kimberlite magma ascent. Geochim Cosmochim Acta 158:48–56CrossRefGoogle Scholar
  31. Kamenetsky VS, Kamenetsky MB, Sobolev AV, Golovin AV, Demouchy S, Faure K, Sharygin VV, Kuzmin DV (2008) Olivine in the Udachnaya-East kimberlite (Yakutia, Russia): types, compositions and origins. J Petrol 49:823–839CrossRefGoogle Scholar
  32. Kamenetsky VS, Golovin AV, Maas R, Giuliani A, Kamenetsky MB, Weiss Y (2014) Towards a new model for kimberlite petrogenesis: evidence from unaltered kimberlites and mantle minerals. Earth Sci Rev 139:145–167CrossRefGoogle Scholar
  33. Kargin AV, Sazonova LV, Nosova AA, Lebedeva NM, Tretyachenko VV, Abersteiner A (2017) Cr-rich clinopyroxene megacrysts from the Grib kimberlite, Arkhangelsk province, Russia: relation to clinopyroxene–phlogopite xenoliths and evidence for mantle metasomatism by kimberlite melts. Lithos 292–293:34–48CrossRefGoogle Scholar
  34. Kopylova MG, Nowell GM, Pearson DG, Markovic G (2009) Crystallization of megacrysts from protokimberlitic fluids: geochemical evidence from high-Cr megacrysts in the Jericho kimberlite. Proceedings of the 9th IKC, Lithos 112S:284–295Google Scholar
  35. Kreston P (1973) The geology of Lemphane pipes and neighbouring intrusions. In: Nixon PH (ed) Lesotho kimberlites. Cape and Transvaal Printers, pp 159–167Google Scholar
  36. Lim E, Giuliani A, Phillips D, Goemann K (2018) Origin of complex zoning in olivine from diverse, diamondiferous kimberlites and tectonic settings: Ekati (Canada), Alto Paranaiba (Brazil) and Kaalvallei (South Africa), Miner Petrol this volumeGoogle Scholar
  37. Lloyd FE, Woolley AR, Stoppa F, Eby GN (2002) Phlogopite–biotite parageneses from the K–mafic–carbonatite effusive magmatic association of Katwe–Kikorongo, SW Uganda. Miner Petrol 74:299–322CrossRefGoogle Scholar
  38. Mitchell RH (1986) Kimberlites: mineralogy, geochemistry and petrology. Springer Science & Business Media p 442Google Scholar
  39. Mitchell RH (1995) Kimberlites, orangeites and related rocks. Plenum Press, New York, p 410CrossRefGoogle Scholar
  40. Mitchell RH, Bergman SC (1991) Petrology of lamproites. Plenum Press, New York, p 447CrossRefGoogle Scholar
  41. Moore A, Costin G (2016) Kimberlitic olivines derived from the Cr-poor and Cr-rich megacryst suites. Lithos 258–259:215–227CrossRefGoogle Scholar
  42. Nehru CE, Reddy AK (1989) Ultramafic xenoliths from Wajrakarur kimberlites, India. In: Ross J, Jaques AL, Ferguson J et al. (eds) Kimberlites and Related Rocks, Proceedings of the 4th IKC, Geol Soc Australia Spl Pub vol 14, Sydney, pp 745–759Google Scholar
  43. Passchier CW, Trouw RAJ (2005) Microtectonics. Springer, Berlin, p. 353Google Scholar
  44. Pilbeam LH, Nielsen T, Waight TE (2013) Digestion fractional crystallization (DFC): an important process in the genesis of kimberlites. Evidence from olivine in the Majuagaa kimberlite, southern West Greenland. J Petrol 54:1399–1425CrossRefGoogle Scholar
  45. Ramakrishnan M, Vaidyanadhan R (2008) Geology of India. Geol Soc India 1, Bangalore, 556Google Scholar
  46. Rao PS, Phadtre PN (1966) Kimberlite pipe-rocks of Wajrakarur area Anantapur district, Andhra Pradesh. J Geol Soc India 7:118–123Google Scholar
  47. Ravi S, Sufija MV, Patel SC, Sheikh JM, Sridhar M, Kaminsky FV, Khachatryan GK, Nayak SS, Bhaskara Rao KS (2013) Diamond potential of the Eastern Dharwar Craton, southern India, and a reconnaissance study of physical and infrared characteristics of the diamonds. In: Pearson DG, Grutter HS, Harris JW et al. (eds) Proceedings of the 10th IKC, Spl Issue J Geol Soc India vol 1, Bangalore, p 335–348Google Scholar
  48. Reddy TAK (1987) Kimberlite and lamproitic rocks of Wajrakarur area, Andhra Pradesh. J Geol Soc India 61:131–146Google Scholar
  49. Russell JK, Porritt LA, Lavallée Y, Dingwell DB (2012) Kimberlite ascent by assimilation-fuelled buoyancy. Nature 481:352–356CrossRefGoogle Scholar
  50. Scott Smith BH (1989) Lamproites and kimberlites of India. Neues Jb Mineral Abh 161:193–225Google Scholar
  51. Shaikh AM, Patel SC, Ravi S, Behera D, Pruseth KL (2017) Mineralogy of the TK1 and TK4 “kimberlites” in the Timmasamudram cluster, Wajrakarur Kimberlite Field, India: implications for lamproite magmatism in a field of kimberlites and ultramafic lamprophyres. Chem Geol 455:208–230CrossRefGoogle Scholar
  52. Shore M, Fowler AD (1996) Oscillatory zoning in minerals: a common phenomenon. Can Mineral 34:1111–1126Google Scholar
  53. Skinner EMW (1989) Contrasting Group I and Group II kimberlite petrology: towards a genetic model for kimberlites. In: Ross J, Jaques AL, Ferguson J et al. (eds) Kimberlites and Related Rocks, Proceedings of the 4th IKC, Geol Soc Australia Spl Pub vol 14, Sydney, p 528–544Google Scholar
  54. Soltys A, Giuliani A, Phillips D, Kamenetsky VS, Maas R, Woodhead J, Rodemann T (2016) In-situ assimilation of mantle minerals by kimberlitic magmas — direct evidence from a garnet wehrlite xenolith entrained in the Bultfontein kimberlite (Kimberley, South Africa). Lithos 256–257:182–196CrossRefGoogle Scholar
  55. Su BX, Zhang HF, Sakyi PA et al (2011) The origin of spongy texture in minerals of mantle xenoliths from the Western Qinling, central China. Contrib Mineral Petrol 161:465–482CrossRefGoogle Scholar
  56. Tappe S, Foley SF, Kjarsgaard BA, Romer RF, Heaman LM, Stracke A, Jenner GA (2008) Between carbonatite and lamproite—diamondiferous Torngat ultramafic lamprophyres formed by carbonate-fluxed melting of cratonic MARID-type metasomes. Geochim Cosmochim Acta 72:3258–3286CrossRefGoogle Scholar
  57. Tappe S, Pearson DG, Nowell G, Nielsen T, Milstead P, Muehlenbachs K (2011) A fresh isotopic look at Greenland kimberlites: cratonic mantle lithosphere imprint on deep source signal. Earth Planet Sci Lett 305:235–248CrossRefGoogle Scholar
  58. Veter M, Foley SF, Mertz-Kraus R, Groschopf N (2017) Trace elements in olivine of ultramafic lamprophyres controlled by phlogopite-rich mineral assemblages in the mantle source. Lithos 292–293:81–95CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Azhar M. Shaikh
    • 1
    Email author
  • Satya P. Kumar
    • 1
  • Suresh C. Patel
    • 1
  • Satyajeet S. Thakur
    • 2
  • Subramanian Ravi
    • 3
  • Duryadhan Behera
    • 4
  1. 1.EPMA Lab, Department of Earth SciencesIndian Institute of Technology BombayMumbaiIndia
  2. 2.Wadia Institute of Himalayan GeologyDehra DunIndia
  3. 3.Geological Survey of IndiaHyderabadIndia
  4. 4.Department of Earth SciencesSambalpur UniversityBurlaIndia

Personalised recommendations