Advertisement

Mineralogy and Petrology

, Volume 112, Issue 4, pp 521–534 | Cite as

Petrogenesis of ultramafic rocks and olivine-rich troctolites from the East Taiwan Ophiolite in the Lichi mélange

  • Tomoaki Morishita
  • Biswajit Ghosh
  • Yusuke Soda
  • Tomoyuki Mizukami
  • Ken-ichiro Tani
  • Osamu Ishizuka
  • Akihiro Tamura
  • Chihiro Komaru
  • Shoji Aari
  • Hsiao-Chin Yang
  • Wen-Shan Chen
Original Paper
  • 346 Downloads

Abstract

We examine ultramafic and olivine-rich troctolite blocks of the East Taiwan Ophiolite (ETO) in the Lichi Mélange. Although ultramafic rocks are extensively serpentinized, the primary minerals, such as olivine, orthopyroxene, clinopyroxene, spinel and plagioclase can be identified. The ultramafic rocks are classified into harzburgite (± clinopyroxene), dunite, and olivine websterite. Major and trace element compositions of the primary minerals in harzburgites, such as the Cr# [= Cr/(Cr + Al) atomic ratio] of chromian spinel (0.3–0.58) and incompatible elements-depleted trace element patterns of clinopyroxenes, indicate their residue origin after partial melting with less flux components. These compositions are similar to those from mid-ocean ridge peridotites as well as back-arc peridotites from the Philippine Sea Plate. The olivine websterite contains discrete as well as occasional locally concentrated plagioclase grains. Petrological characteristics coupled with similarity in trace element patterns of clinopyroxenes in the harzburgite and olivine websterite samples indicate that the olivine websterite is likely formed by clinopyroxene addition to a lherzolitic/harzburgitic peridotite from a pyroxene-saturated mafic melt. Dunite with medium Cr# spinels indicates cumulus or replacement by melt-peridotite reaction origins. Mineral composition of olivine-rich troctolite cannot be explained by simple crystallization from basaltic magmas, but shows a chemical trend expected for products after melt-peridotite interactions. Mineral compositions of the dunite and olivine-rich troctolite are also within chemical ranges of mid-ocean ridge samples, and are slightly different from back-arc samples from the Philippine Sea Plate. We conclude that peridotites in the ETO are not derived from the northern extension of the Luzon volcanic arc mantle. Further geochronological study is, however, required to constrain the origin of the ETO ophiolite, because peridotites are probably indistinguishable in petrology and mineralogy between the Philippine Sea and the South China Sea/Eurasian Plates.

Keywords

East Taiwan Ophiolite Peridotite Open-system melting Melt-peridotite interaction 

Notes

Acknowledgements

We are grateful to Yuka Nishikawa of National Taiwan University for their help in arranging the field work. We also thank S. Umino and T. Mizukami for discussions. T.M. would like to thank K. Ozawa for providing the spread sheet of Ozawa (2001). Valuable comments from K-L Wang and C-Z Liu (reviewers) and Q Wang (journal editor) improved the manuscript. This study was partly supported by a Grant-in-Aid for Scientific Research of the Ministry of Education Culture, Sports, Science and Technology of Japan (No. 25302012, 16H05741: Kiban B,) to TM and (24684037: Wakate A) to KT.

References

  1. Arai S (1987) An estimation of the least depleted spinel peridotite on the basis of olivine-spinel mantle array. N Jahrb Min Monatsh 8:347–354Google Scholar
  2. Arai S (1994) Characterization of spinel peridotites by olivine-spinel compositional relationships: review and interpretation. Chem Geol 113:191–204CrossRefGoogle Scholar
  3. Arai S, Kida M (2000) Origin of fine-grained peridotite xenoliths from Iraya volcano of Batan Island, Philippines: deserpentinization or metasomatism at the wedge mantle beneath an incipient arc? Is Arc 9:458–471CrossRefGoogle Scholar
  4. Arai S, Matsukage K (1996) Petrology of the gabbro-troctolite-peridotite complex from Hess Deep, Equatorial Pacific: implications for mantle-melt interaction within the oceanic lithosphere. In: Gillis MC, Allan KM, Meyer PS (eds) Proceedings of the Ocean Drilling Program, Scientific Results, vol 147. Ocean Drilling Program, College Station, pp 135–155Google Scholar
  5. Arai S, Matsukage K (1998) Petrology of a chromitite micropod from Hess Deep, equatorial Pacific: a comparison between abyssal and alpine-type podiform chromitites. Lithos 43:1–14CrossRefGoogle Scholar
  6. Arai S, Matsukage K, Iosbe E, Vysotskiy S (1997) Concentration of incompatible elements in oceanic mantle: Effect of melt/wall interaction in stagnant or failed melt conduits within peridotite. Geochim Cosmochim Acta 61:671–675CrossRefGoogle Scholar
  7. Arai S, Takada S, Michibayashi K, Kida M (2004) Petrology of periodite xenoliths from Iraya volcano, Philippines, and its implications for dynamic mantle-wedge processes. Jour Petrol 45:369–389CrossRefGoogle Scholar
  8. Bernstein S, Hanghøj K, Kelemen PB, Brooks CK (1998) Ultra-depleted, shallow cratonic mantle beneath West Greenland: dunitic xenoliths from Ubekendt Ejland. Contrib Mineral Petrol 152:335–347CrossRefGoogle Scholar
  9. Byrne TB, Liu C-S (2002) Preface: Introduction to the geology and geophysics of Taiwan. Arc–continent collision in Taiwan: new marine observations and tectonic evolution. In: Byrne TB, Liu C-S (eds) Geology and Geophysics of an Arc-Continent collision, Taiwan, 358 pp. V–VIII. Boulder, Colorado, Geol Soc Amer Spec Pap, Republic of ChinaGoogle Scholar
  10. Chai BHT (1972) Structure and tectonic evolution of Taiwan. Amer Jour Sci 272:389–422CrossRefGoogle Scholar
  11. Chang C-P, Angelier J, Huang C-Y (2009) Evolution of subductions indicated by mélanges in Taiwan. In: Lallemand S, Funiciello F (eds) Subduction Zone Geodynamics. Springer-Verlag, Berlin, Heidelberg.  https://doi.org/10.1007/978-3-540-87974-9$4
  12. Chen W-S, Wang Y (1988) Development of deep-sea fan systems in Coastal Range Basin, eastern Taiwan. Acta Geol Taiwan 26:37–56Google Scholar
  13. Dick HJB, Lissenberg CJ, Warren JM (2010) Mantle melting, melt transport, and delivery beneath a slow-spreading ridge: the paleo-MAR from 23º15′N to 23º45′N. J Petrol 51:425–467Google Scholar
  14. Dilek Y, Furnes H (2011) Ophiolite genesis and global tectonics: geochemical and tectonic fingerprinting of ancient oceanic Lithosphere. Geol Soc Amer Bull 123:387–411CrossRefGoogle Scholar
  15. Ghosh B, Morishita T, Gupta BS, Tamura A, Arai S, Bandyopadhyay D (2014) Moho transition zone in the Cretaceous Andaman ophiolite, India: a passage from the mantle to the crust. Lithos 198–199:117–128CrossRefGoogle Scholar
  16. Green DH, Falloon TJ (1998) Pyrolite: a Ringwood concept and its current expression. In: Jackson I (ed), The Earth’s mantle. composition, structure, and evolution. 594 pp, pp 311–378, Cambridge University PressGoogle Scholar
  17. Grove TL, Kinzler RJ (1992) Fractionation of Mid-Ocean Ridge Basalt (MORB). Geophys Monog 1:281–310. AGUGoogle Scholar
  18. Hall R, Ali JR, Anderson CD, Baker SJ (1995) Origin and motion history of the Philippine sea plate. Tectonophys 251:229–250CrossRefGoogle Scholar
  19. Harigane Y, Michibayashi Y, Ohara Y (2011) Deformation and hydrotherml metamorphism of gabbroic rocks within the Godzilla Megamullion, Parece Vela Basin, Philippine sea. Lithos 124:185–199CrossRefGoogle Scholar
  20. Hellebrand E, Snow JE, Dick HJB, Hofmann AW (2001) Coupled major and trace elements as indicators of the extent of melting in mid-ocean-ridge peridotites. Nature 410:677–681Google Scholar
  21. Ho C-s (1988) An introduction to the geology of Taiwan: explanatory text of the geologic map of Taiwan. Central Geological Survey, Min Econ Aff, p 192Google Scholar
  22. Huang C-Y, Yuan PB, Tsao S-J (2006) Temporal and spatial records of active-arc continent collision in Taiwan: a synthesis. Geol Soc Amer Bull 118:274–288CrossRefGoogle Scholar
  23. Huang C-Y, Chien CW, Yao B, Chang CP (2008) The Lichi Mélange: A collision mélange formation along early arcward backthrusts during forearc basin closure, Taiwan arc-continent collision, in Draut AE, Clift PD, Scholl DW (eds) Formation and applications of the sedimentary record in Arc colli- sion zones. Geol Soc Amer Spec Pap, pp 127–154Google Scholar
  24. Ishida Y, Morishita T, Arai S, Shirasaka M (2004) Simultaneous in-site multi-element analysis of minerals on this section using LA-ICP-MS. Sci Rep Kanazawa Univ 4:31–42Google Scholar
  25. Jahn B-M (1986) Mid-ocean ridge or marginal basin origin of the East Taiwan Ophiolite: chemical and isotopic evidence. Contrib Mineral Petrol 92:194–206CrossRefGoogle Scholar
  26. Johnson KTM, Dick HJB, Shimizu N (1990) Melting in the oceanic upper mantle: an ion microprobe study of diopsides in abyssal peridotites. Jour Geophys Res 95:2661–2678CrossRefGoogle Scholar
  27. Kawamoto T, Yoshikawa M, Kumagai Y, Mirabueno MHT, Okuno M, Kobayashi T (2013) Mantle wedge infiltrated with saline fluids from dehydration and decarbonation of subdueting slab. Proceed Nat Acad Sci 110:9663–9668CrossRefGoogle Scholar
  28. Kelemen PB (1990) Reaction between ultramafic rocks and fractionating basaltic magma I. Phase relations, the origin of calc-alkaline magma series, and the formation fo discordant dunite. Jour Petrol 31:51–98CrossRefGoogle Scholar
  29. Kelemen PB, Shimizu N, Salters VJM (1995) Extraction of mid-ocean-ridge basalt from the upwelling mantle by focused flow of melt in dunite channels. Nature 375:747–753CrossRefGoogle Scholar
  30. Kimura J-I, Sano S (2012) Reactive melt flow as the origin of residual mantle lithologies and basalt chemistries in mid-ocean ridges: implications from the Red Hills peridotite, New Zealand. Jour Petrol 8:1637–1671CrossRefGoogle Scholar
  31. Kinzler RJ, Grove TL (1992) Primary magmas of mid-ocean ridge basalts 1. experiments and methods. Jour Geophys Res 97:6885–6906CrossRefGoogle Scholar
  32. Li C-F, Lin J, Kulhanek DK, Williams T, Bao R, Briais A, Brown EA, Chen Y, Clift PD, Colwell FS, Dadd KA, Ding W-W, Hernández-Almeida I, Huang X-L, Hyun S, Jiang T, Koppers AAP, Li Q, Liu C, Liu Q, Liu Z, Nagai RH, Peleo-Alampay A, Su X, Sun Z, Tejada MLG, Trinh HS, Yeh Y-C, Zhang C, Zhang F, Zhang G-L, Zhao X, (2015). Expedition 349 summary. In Li, C.-F., Lin J, Kulhanek DK and the Expedition 349 Scientists (2015) Proc IODP 349: South China Sea Tectonics: College Station, TX (International Ocean Discovery Program).  https://doi.org/10.14379/iodp.proc.349.101.2015
  33. Lin AT, Watts AB, Hesselbo SP (2003) Cenozoic stratigraphy and subsidence history of the South China Sea margin in the Taiwan region. Basin Res 15:453–478CrossRefGoogle Scholar
  34. Liou JG (1974) Mineralogy and chemistry of glassy basalts, Coastal Range ophiolites, Taiwan. Geol Soc Amer Bull 85:1–10CrossRefGoogle Scholar
  35. Liou JG, Ernst WG (1979) Oceanic ridge metamorphism of the East Taiwan Ophiolite. Contrib Mineral Petrol 68:335–348CrossRefGoogle Scholar
  36. Liou JG, Suppe J, Ernst WG (1977) Conglomerates and pebbly mud- stones in the Lichi Mélange, eastern Taiwan. Geol Soc China Memoir 2:115–128Google Scholar
  37. Longerich HP, Jackson SE, Günther D (1996) Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation. Jour Anal Atom Spectr 11:899–904CrossRefGoogle Scholar
  38. Loocke M, Snow JE, Ohara Y (2013) Melt stagnation in peridotites from the Godzilla Megamullion oceanic core complex, Parece Vela Basin, Philippine sea. Lithos 182–183:1–10CrossRefGoogle Scholar
  39. Malavieille J, Lallemand SE, Dominguez S, Deschamps A, Lu C-Y, Liu C-S, Schnürle P, ACT Scientific Crew (2002) Arc–continent collision in Taiwan: new marine observations and tectonic evolution. In: Byrne TB, Liu C-S (eds), Geology and Geophysics of an Arc-Continent collision, Taiwan, 358, pp 187–211. Republic of China: Boulder, Colorado, Geol Soc Amer Spec PapGoogle Scholar
  40. McDonough WF, Sun S-s (1995) The composition of the Earth. Chem Geol 120:223–253CrossRefGoogle Scholar
  41. Mizukami T, Yokoyama H, Hiramatsu Y, Arai S, Kawahara H, Nagaya T, Wallis SR (2014) Two types of antigorite serpentinite controlling heterogeneous slow-slip behaviors of slab-mantle interface. Earth Planet Sci Lett 401:148–158CrossRefGoogle Scholar
  42. Morishita T, Arai S, Tamura A (2003) Petrology of an apatite-rich layer in the Finero phlogopite-peridotite, Italian Western Alps; implications for evolution of a metasomatising agent. Lithos 69:37–49CrossRefGoogle Scholar
  43. Morishita T, Ishida Y, Arai S (2005a) Simultaneous determination of multiple trace element compositions in thin (< 30 µm) layers of BCR-2G by 193 nm ArF excimer laser ablation-ICP-MS: implications for matrix effect and element fractionation on quantitative analysis. Geochem Jour 39: 327 – 40Google Scholar
  44. Morishita T, Ishida Y, Arai S, Shirasaka M (2005b) Determination of multiple trace element compositions in thin (< 30 µm) layers of NIST SRM 614 and 616 using laser ablation ICP-MS. Geostand Geoanal Res 29:107–122CrossRefGoogle Scholar
  45. Morishita T, Maeda J, Miyashita S, Kumagai H, Matsumoto T, Dick HJB (2007) Petrology of local concentration of chromian spinel in dunite from the slow-spreading Southwest Indian Ridge. Eur Jour Mineral 19:871–882CrossRefGoogle Scholar
  46. Morishita T, Hara K, Nakamura K, Sawaguchi T, Tamura A, Arai S, Okino K, Takai K, Kumagai H (2009) Igneous, alteration and exhumation processes recorded in abyssal peridotites and related fault rocks from an oceanic core complex along the Central Indian Ridge. J Petrol 50:1299–1325CrossRefGoogle Scholar
  47. Morishita T, Dilek Y, Shallo M, Akihiko Tamura, Arai S (2011a) Insight into the uppermost mantle section of a maturing arc: the Eastern Mirdita ophiolite, Albania. Lithos 124:215–226CrossRefGoogle Scholar
  48. Morishita T, Tani K, Shukuno H. Harigane Y, Tamura A, Kumagai H, Hellebrand E (2011b) Diversity of melt conduits in the Izu-Bonin-Mariana forearc mantle: Implications for the earliest stage of arc magmatism. Geology 39:411–414CrossRefGoogle Scholar
  49. Ohara Y, Stern RJ, Ishii T, Yurimoto H, Yamazaki T (2002) Peridotites from the Mariana Trough: first look at the mantle beneath an active back-arc basin. Contrib Mineral Petrol 143:1–18CrossRefGoogle Scholar
  50. Ohara Y, Fujioka K, Ishii T, Yurimoto H (2003) Peridotites and gabbros from the Parece Vela backarc basin: unique tectonic window in an extinct backarc spreading ridge. Geochem Geophys Geosyst 4, doi: https://doi.org/10.1029/2002GC000469
  51. Ozawa K (2001) Mass balance equations for open magmatic systems: trace element behavior and its application to open system melting in the upper mantle. Jour Geophys Res 106:13407–13434CrossRefGoogle Scholar
  52. Ozawa K, Shimizu N (1995) Open-system melting in the upper mantle: constraints from the Hayachine-Miyamori ophiolite, northeastern Japan. Jour Geophys Res 100:22315–22335CrossRefGoogle Scholar
  53. Parkinson IJ, Pearce JA (1998) Peridotites from the Izu-Bonin-Mariana Forearc (ODP Leg 125): evidence for mantle melting and melt-mantle interaction in a supra-subduction zone setting. Jour Petrol 39:1577–1618CrossRefGoogle Scholar
  54. Payot BD, Arai S, Dick HJB, Abe N, Ichiyama Y (2011) Podiform chromitite formation in a low-Cr/high-Al system: an example from the Southwest Indian Ridge (SWIR). Mineral Petrol 108:533–549CrossRefGoogle Scholar
  55. Peacock SM, Hyndman RD (1999) Hydrous minerals in the mantle wedge and the maximum depth of subduction thrust earthquakes. Geophys Res Lett 26:2517–2520CrossRefGoogle Scholar
  56. Pearce NJG, Perkins WT, Westgate JA, Gorton MP, Jackson SE, Neal CR, Chenery SP (1997) A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostand News 21:114–144CrossRefGoogle Scholar
  57. Presnall DC, Dixon SA, Dixon JR, O’Donnell TH, Brenner NL, Schrock RL, Dycus DW (1978) Liquidus phase relations on the join diopside-forsterite-anothite from 1 atom to 20 kbar: their bearing on the generation and crystallization of basaltic magma. Contrib Mineral Petrol 66:203–220CrossRefGoogle Scholar
  58. Python M, Ceuleneer G, Ishida Y, Barrat J-A, Arai S (2007) Oman diopsidites: a new lithology diagnostic of very high temerature hydrothermal circulation in mantle peridotite below oceanic spreading centres. Earth Planet Sci Lett 255:289–305CrossRefGoogle Scholar
  59. Renna MR, Tribuzio R (2011) Olivine-rich troctolites from Ligurian Ophiolites (Italy): evidence for impregnateon of replacive mantle conduits by MORB-type melts. Jour Petrol 52:1763–1790CrossRefGoogle Scholar
  60. Ribeiro da Costa I, Barriga EJAS, Viti C, Mellini M, Wicks FJ (2008) Antigorite in deformed serpentinites fro the Mid-Atlantic Ridge. Eur Jour Mineral 20:563–572CrossRefGoogle Scholar
  61. Sanfilippo A, Dick HJB, Ohara Y (2013) Melt-rock reaction in the manlte: mantle troctolites from the Parece Vela ancient back-arc spreading center. Jour Petrol 54:861–885CrossRefGoogle Scholar
  62. Sanfilippo A, Morishita T, Kumagai H, Nakamura K, Okino K, Hara K, Tamura A, Arai S (2015) Hybrid troctolites from mid-ocean ridges: inherited mantl ein the lower crust. Lithos 232:124–130CrossRefGoogle Scholar
  63. Sanfilippo A, Dick HJB, Ohara Y, Tiepolo M (2016) New insights on the origin of troctolites from the breakaway area of the Godzilla Megamullion (Parece Vela back-arc basin): the role of melt-mantle interaction on the composition of the lower crust. Isl Arc 25:220–234CrossRefGoogle Scholar
  64. Shih CY, Sun S-s, Liou JG, Yen TP, Rhodes JM, Hsu C (1972) Petrology and geochemistry of the Coastal Range ophiolite of Taiwan., EOS 53, 535.Google Scholar
  65. Suppe J (1981) Mechanics of mountain building and metamorphism in Taiwan. Geol Soc China Mem 4:67–89Google Scholar
  66. Suppe J, Liou JG, Ernst WG (1981) Paleogeographic origins of the Miocene East Taiwan Ophiolite. Amer Jour Sci 281:228–246CrossRefGoogle Scholar
  67. Takahashi N (1992) Evidence for melt segregation towards fractures in the Horoman mantle peridotite complex. Nature 359:52–55CrossRefGoogle Scholar
  68. Takahashi E, Uto K, Schilling JG (1987) Primary magma compositions and Mg/Fe ratios of their mantle residues along Mid Atlantic Ridges 29°N to 73°N. Tech Rep ISEI, Okayama Univ A-9: 1–12Google Scholar
  69. Workman RK, Hart SR (2005) Major and trace element compositions of the depleted MORB mantle (DMM). Earth Planet Sci Lett 231:53–72CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2017

Authors and Affiliations

  • Tomoaki Morishita
    • 1
  • Biswajit Ghosh
    • 1
    • 2
  • Yusuke Soda
    • 1
    • 3
  • Tomoyuki Mizukami
    • 1
  • Ken-ichiro Tani
    • 4
  • Osamu Ishizuka
    • 5
  • Akihiro Tamura
    • 1
  • Chihiro Komaru
    • 1
  • Shoji Aari
    • 1
  • Hsiao-Chin Yang
    • 6
  • Wen-Shan Chen
    • 7
  1. 1.Kanazawa UniversityKanazawaJapan
  2. 2.Department of GeologyUniversity of CalcuttaKolkataIndia
  3. 3.Department of GeosciencesOsaka City UniversityOsakaJapan
  4. 4.National Museum of Nature and ScienceTsukuba-shiJapan
  5. 5.Institute of Geology and Geoinformation Geological Survey of Japan/AISTTsukubaJapan
  6. 6.National Museum of PrehistoryTaitungRepublic of China
  7. 7.Department of GeosciencesNational Taiwan UniversityTaipeiRepublic of China

Personalised recommendations