Mineralogy and Petrology

, Volume 112, Issue 4, pp 501–520 | Cite as

North Qorveh volcanic field, western Iran: eruption styles, petrology and geological setting

  • Abbas AsiabanhaEmail author
  • Jacques-Marie Bardintzeff
  • Sara Veysi
Original Paper


In the metamorphic Sanandaj-Sirjan Zone of western Iran, the “North Qorveh Volcanic Field” is constituted by Pleistocene scoria cones and associated deposits. Most scoria cones in the area display a simple structure resulted by Strombolian eruptions. Some of them are more complex, such as the Kuh-e Qarineh cone in where basaltic scoriaceous falls are underlain by felsic pyroclastic density–current deposits due to gas streaming at the base of eruption columns and are overlain by basaltic lava flows linked to basaltic fire fountains. Thus, it seems that the latter cones have been likely constructed by more or less violent Strombolian and then Hawaiian activities. Two types of enclaves have been found: gneissic xenoliths scavenged from the metamorphic basement and ultramafic–mafic (37–47 wt% SiO2) cumulates with the same paragenesis as the basaltic scoriaceous falls and lava flows. Three classes of cumulates were identified: (1) apatite mica hornblendite; (2) apatite hornblendite; and (3) olivine biotitite. Moreover, the mineral assemblage of basaltic rocks in the area (olivine (Fo79 − 83) + diopside + pargasite + phlogopite + Fe-Ti oxides ± plagioclase ± apatite) is very similar to lamprophyric facies. So, it seems that the parental magma was originated by mantle metasomatism. Although the felsic pyroclastic density–current deposits show a calcalkaline trend, the whole-rock and mineral chemistry of the basaltic rocks in the area imply an alkaline affinity. Also, the samples show subduction and continental collision signatures. Thus, the alkaline composition of this young volcanic centre in a metamorphic terrain could be explained by descending slab-break off and reactivation of small-scale convection at the lithosphere-asthenosphere boundary.


Scoria cone Strombolian eruption Enclave Slab break-off Metasomatism Iran 



L. McGee and J. Lindsay are thanked for useful remarks. Careful reviews by B. Bonin, an anonymous reviewer, and journal editor L. Danyushevsky greatly helped to improve this paper.


  1. Alavi M (1994) Tectonics of the Zagros orogenic belt of Iran: new data and interpretations. Tectonophysics 229:211–238CrossRefGoogle Scholar
  2. Alavi M (2007) Structures of the Zagros fold-thrust belt in Iran. Am J Sci 307:1064–1095CrossRefGoogle Scholar
  3. Allen MB, Kheirkhah M, Neill I, Emami MH, Mcleod CL (2013) Generation of arc and within-plate chemical signatures in collision zone magmatism: quaternary lavas from Kurdistan province, Iran. J Petrol 54:887–911CrossRefGoogle Scholar
  4. Almeida ME, Macambira MJB, Oliveira EC (2007) Geochemistry and zircon geochronology of the I-type high-K calc-alkaline and S-type granitoid rocks from southeastern Roraima, Brazil: orosirian collisional magmatism evidence (1.97–1.96 Ga) in central portion of Guyana shield. Precambrian Res 155:69–97CrossRefGoogle Scholar
  5. Amini A (2001) Red colouring of the upper red formation in central of its basin, central zone, Iran. J Sci Islam Repub Iran 12:145–156Google Scholar
  6. Ancey M, Bastenaire F, Tixier R (1977a) Application of statistical methods to electron probe microanalysis. In: Beaman DR, Ogilvie RE, Wittry DB (eds) Proceedings of the eighth international congress on X-Ray optics and microanalysis. Pendell Publishing Company, pp 49Google Scholar
  7. Ancey M, Bastenaire F, Tixier R (1977b) The statistical control and optimization of X-ray intensity measurements. J Phys D Appl Phys 10:817–830CrossRefGoogle Scholar
  8. Asiabanha A, Bardintzeff JM (2014) Globule-rich lavas in the Razjerd district, Qazvin, Iran: a unique volcanic fabric. Arab J Geosci 7:1907–1925CrossRefGoogle Scholar
  9. Asiabanha A, Foden J (2012) Post-collisional transition from an extensional volcano-sedimentary basin to a continental arc in the Alborz ranges, N-Iran. Lithos 148:98–111CrossRefGoogle Scholar
  10. Asiabanha A, Bardintzeff JM, Kananian A, Rahimi G (2012) Post-Eocene volcanics of the Abazar district, Qazvin, Iran: mineralogical and geochemical evidence for a complex magmatic evolution. J Asian Earth Sci 45:79–94CrossRefGoogle Scholar
  11. Azizi H, Asahara Y, Tsuboi M (2014) Quaternary high-Nb basalts: existence of young oceanic crust under the Sanandaj-Sirjan zone, NW-Iran. Int Geol Rev 56:167–186CrossRefGoogle Scholar
  12. Beattie P (1993) Olivine-melt and orthopyroxene-melt equilibria. Contrib Mineral Petrol 115:103–111CrossRefGoogle Scholar
  13. Berberian F, Berberian M (1981) Tectono-plutonic episodes in Iran. In: Gupta HK, Delany FM (eds) Zagros Hindukosh, Himalaya geodynamic evolution. Amer Geophys Union Washington DC, pp 5–32Google Scholar
  14. Berberian M, King GCP (1981) Towards a paleogeography and tectonic evolution of Iran. Can J Earth Sci 18:210–265CrossRefGoogle Scholar
  15. Best MG (2003) Igneous and metamorphic petrology. Blackwell PublishingGoogle Scholar
  16. Boccaletti M, Innocenti F, Manetti P, Mazzuoli R, Motamed A, Pasquare G, Radicati di Brozolo F, Amin Sobhani E (1976) Neogene and quaternary volcanism of the Bijar Area (Western Iran). Bull Volcanol 40:121–132CrossRefGoogle Scholar
  17. Cas RAF, Wright JV (1988) Volcanic successions: modern and ancient. Unwin HymanGoogle Scholar
  18. Chappell BW, White AJR (1974) Two contrasting granite types. Pac Geol 8:173–174Google Scholar
  19. Connor CB, Conway FM (2000) Basaltic volcanic fields. In: Sigurdsson H (ed) Encyclopedia of volcanoes. Academic, New York, p 331–343Google Scholar
  20. Darvishzadeh A, Shahbazi H (2009) Genetic classification of enclaves of the Qezeljeh Kand Stratovolcano, NE-Qorveh. Earth Resour 2:45–49 (Farsi)Google Scholar
  21. Davoudian AR, Genser J, Dachs E, Shabanian N (2008) Petrology of eclogites from north of Shahrekord, Sanandaj-Sirjan Zone, Iran. Mineral Petrol 92:393–413CrossRefGoogle Scholar
  22. Davoudian AR, Genser J, Neubauer F, Shabanian N (2016) 40Ar/39Ar mineral ages of eclogites from North Shahrekord in the Sanandaj–Sirjan zone, Iran: implications for the tectonic evolution of Zagros orogeny. Gondw Res 37:216–240CrossRefGoogle Scholar
  23. Doubik P, Hill BE (1999) Magmatic and hydromagmatic conduit development during the 1975 Tolbachik eruption, Kamchatka, with implications for hazards assessment at Yucca Mountain, NV. J Volcanol Geotherm Res 91:43–64CrossRefGoogle Scholar
  24. Fan WM, Gue F, Wang YJ, Lin G (2003) Late Mesozoic calc-alkaline volcanism of post-orogenic extension in the northern Da Hinggan mountains, northeastern China. J Volcanol Geotherm Res 121:115–135CrossRefGoogle Scholar
  25. Foley S (1992) Vein-plus-wall-rock melting mechanisms in the lithosphere and the origin of potassic calcalkaline magmas. Lithos 28:435–453CrossRefGoogle Scholar
  26. Ghasemi A, Talbot CJ (2006) A new tectonic scenario for the Sanandaj–Sirjan Zone (Iran). J Asian Earth Sci 26:683–693CrossRefGoogle Scholar
  27. Guilbaud MN, Siebe C, Agustín-Flores J (2009) Eruptive style of the young high-Mg basaltic-andesite Pelagatos scoria cone, southeast of México City. Bull Volcanol 71:859–880CrossRefGoogle Scholar
  28. Haghnazar SH, Malecootyan S (2011) Mantle source characteristics of the quaternary Alkali olivine basalts in Qorveh-Takab area. Petrology 6:17–30 (Farsi)Google Scholar
  29. Hawthorne FC, Oberti R, Harlow GE, Maresch WV, Martin RF, Schumer JC, Welch MD (2012) Nomenclature of the amphibole supergroup. Am Mineral 97:2031–2048CrossRefGoogle Scholar
  30. Hintz AR, Valentine GA (2012) Complex plumbing of monogenetic scoria cones: new insights from the lunar crater volcanic field (Nevada, USA). J Volcanol Geotherm Res 239–240:19–32CrossRefGoogle Scholar
  31. Hosseini M (1997) Explanatory text of the quadrangle map of Qorveh (1:100000). GSI Publications (in Farsi)Google Scholar
  32. Huckenholz HG, Gilbert MC, Kunzman T (1992) Stability and phase relations of calcic amphiboles crystallized from magnesio-hastingsite compositions in the 1 to 45 Kbar pressure range. Neues Jb Mineral Abh 164:229–268Google Scholar
  33. Ionov DA, Hofman AW (1995) Nb-Ta-rich mantle amphiboles and micas: implications for subduction related metasomatic trace element fractionation. Earth Planet Sci Lett 131:341–356CrossRefGoogle Scholar
  34. Irvine TN, Baragar WR (1971) A guide to the chemical classification of the common volcanic rocks. Can J Earth Sci 8:523–548CrossRefGoogle Scholar
  35. Kaislaniemi L, van Hunen J, Allen MB, Neill I (2014) Sublithospheric small-scale convection: a mechanism for collision zone magmatism. Geology 42(4):291–294CrossRefGoogle Scholar
  36. Kord M (2013) Petrological study of gneissic and ultramafic enclaves of NE-Qorveh, Kurdistan. Dissertation, Bu-Ali Sina University, Iran (in Farsi)Google Scholar
  37. Lautze N, Houghton BF (2007) Linking variable explosion style and magma textures during 2002 at Stromboli volcano, Italy. Bull Volcanol 69:445–460CrossRefGoogle Scholar
  38. Le Maitre RW, Streckeisen A, Zanettin B, Le Bas MJ, Bonin B, Bateman P, Bellieni G, Dudek A, Efremova S, Keller J, Lameyre J, Sabine PA, Schmid R, Sørensen H, Wooley AR (2002) Igneous rocks, a classification and glossary of terms. (Recommendations of the international union of geological sciences subcommission on the systematics of igneous rocks). Cambridge University Press, CambridgeCrossRefGoogle Scholar
  39. Malecootyan S, Hagh-Nazar SH, Ghorbani M, Emami MH (2006) Magmatic evolution in quaternary basaltic rocks in Ghorveh–Takab axis. Geosciences 64:166–178. (Farsi)Google Scholar
  40. Martin U, Németh K (2006) How Strombolian is a “Strombolian” scoria cone? Some irregularities in scoria cone architecture from the Transmexican Volcanic Belt, near Volcán Ceboruco, (Mexico) and Al Haruj (Libya). J Volcanol Geotherm Res 155:104–118CrossRefGoogle Scholar
  41. McGetchin TR, Settle M, Chouet BA (1974) Cinder cone growth modeled after Northeast Crater, Mount Etna, Sicily. J Geophys Res 79:3257–3272CrossRefGoogle Scholar
  42. Mitchell RH (1994) The lamprophyre facies. Mineral Petrol 51:137–146CrossRefGoogle Scholar
  43. Molinaro M, Zeyen H, Laurencin X (2005) Lithospheric structure beneath the south-eastern Zagros mountains, Iran: recent slab break-off? Terra Nova 17:1–6CrossRefGoogle Scholar
  44. Moore G, Carmichael ISE (1998) The hydrous phase equilibria (to 3 Kbar) of an andesite and basaltic andesite from western Mexico: constraints on water content and conditions of phenocryst growth. Contrib Mineral Petrol 130:304–319CrossRefGoogle Scholar
  45. Morimoto N (1988) Nomenclature of pyroxenes. Am Mineral 73:1123–1133Google Scholar
  46. Mouthereau F, Lacombe O, Vergés J (2012) Building the Zagros collisional orogen: timing, strain distribution and the dynamics of Arabia/Eurasia plate convergence. Tectonophysics 532–535:27–60CrossRefGoogle Scholar
  47. Pioli L, Erlunda E, Johnson ER, Cashman KV, Wallace PJ, Rosi M, Delgado H (2008) Explosive dynamics of violent Strombolian eruptions: the eruption of Paricutin Volcano 1943–1952 (Mexico). Earth Planet Sci Lett 271:359–368CrossRefGoogle Scholar
  48. Pioli L, Azzopardi BJ, Cashman KV (2009) Controls on the explosivity of scoria cone eruptions: magma segregation at conduit junctions. J Volcanol Geotherm Res 186:407–415CrossRefGoogle Scholar
  49. Polacci M, Corsaro RA, Andronico D (2006) Coupled textural and compositional characterization of basaltic scoria: insights into the transition from Strombolian to fire-fountain activity at Mt Etna, Italy. Geology 3:201–204CrossRefGoogle Scholar
  50. Pouchou JL, Pichoir F (1991) Quantitative analysis of homogeneous and stratified microvolumes applying the model “PAP”. In: Heinrich KFJ, Newbury DE (eds) Electron probe quantitation. Springer, p 31–75Google Scholar
  51. Putirka KD (2008) Thermometers and barometers for volcanic systems. In: Putirka KD, Tepley FJ III (eds) Minerals, inclusions and volcanic processes. Rev Mineral Geochem, 69. Mineral Soc Am, Chantilly, p 61–120Google Scholar
  52. Ridolfi F, Renzulli A, Puerini M (2010) Stability and chemical equilibrium of amphibole in calc-alkaline magmas: an overview, new thermobarometric formulations and application to subduction-related volcanoes. Contrib Mineral Petrol 160:45–66CrossRefGoogle Scholar
  53. Rollinson H (1993) Using geochemical data: evaluation, presentation, interpretation. Longman Scientific and Technical, New YorkGoogle Scholar
  54. Sable J, Houghton BF, Del Carlo P, Coltelli M (2006) Changing conditions of magma ascent and fragmentation during the Etna 122 BC basaltic Plinian eruption: evidence from clast microtextures. J Volcanol Geotherm Res 158:333–354CrossRefGoogle Scholar
  55. Seghedi I, Popa RG, Panaiotu CG, Szakács A, Pécskay Z (2016) Short-lived eruptive episodes during the construction of a Na-alkalic basaltic field (Perşani Mountains, SE Transylvania, Romania). Bull Volcanol 78:69CrossRefGoogle Scholar
  56. Semet MP, Ernst WS (1981) Experimental stability relations of the amphibole magnesiohastingsite. Geol Soc Am Bull 92:274–358CrossRefGoogle Scholar
  57. Srivastava RK, Sinha AK (2004) Geochemistry and petrogenesis of early cretaceous sub-alkaline mafic dykes from Swangkre-Rongmil, East Garo Hills, Shillong plateau, northeast India. J Earth Syst Sci 113:683–697CrossRefGoogle Scholar
  58. Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in ocean basins, vol 42.Geol Soc London Spec Publ p 42:313–345Google Scholar
  59. Taddeucci J, Pompilio M, Scarlato P (2004) Conduit processes during the July–August 2001 explosive activity of Mt Etna (Italy): inferences from glass chemistry and crystal size distribution of ash particles. J Volcanol Geotherm Res 137:33–54CrossRefGoogle Scholar
  60. Thornton CP, Tuttle OF (1960) Chemistry of igneous rocks. I: differentiation index. Am J Sci 258:664–684CrossRefGoogle Scholar
  61. Torkian A, Salehi N, Siebel W (2016) Geochemistry and petrology of basaltic lavas from NE-Qorveh, Kurdistan province, western Iran. Neues Jb Miner Abh 193/1:95–112CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria 2017

Authors and Affiliations

  • Abbas Asiabanha
    • 1
    Email author
  • Jacques-Marie Bardintzeff
    • 2
  • Sara Veysi
    • 1
  1. 1.Department of Geology, Faculty of ScienceImam Khomeini International UniversityQazvinIran
  2. 2.Université Paris-Sud, Sciences de la Terre, Volcanologie, Planétologie, UMR CNRS 12 8148 GEOPS, bât. 504, Université Paris-SaclayOrsayFrance

Personalised recommendations