Mineralogy and Petrology

, Volume 112, Issue 2, pp 257–266 | Cite as

Magnetite-apatite-dolomitic rocks of Ust-Chulman (Aldan shield, Russia): Seligdar-type carbonatites?

  • Ilya R. Prokopyev
  • Anna G. Doroshkevich
  • Anna A. Redina
  • Andrey V. Obukhov
Short Communication
  • 236 Downloads

Abstract

The Ust-Chulman apatite ore body is situated within the Nimnyrskaya apatite zone at the Aldan shield in Russia. The latest data confirm the carbonatitic origin of the Seligdar apatite deposit (Prokopyev et al. in Ore Geol Rev 81:296–308, 2017). The results of our investigations demonstrate that the magnetite-apatite-dolomitic rocks of the Ust-Chulman are highly similar to Seligdar-type dolomitic carbonatites in terms of the mineralogy and the fluid regime of formation. The ilmenite and spinel mineral phases occur as solid solutions with magnetite, and support the magmatic origin of the Ust-Chulman ores. The chemical composition of REE- and SO3-bearing apatite crystals and, specifically, monazite-(Ce) mineralisation and the formation of Nb-rutile, late hydrothermal sulphate minerals (barite, anhydrite) and haematite are typical for carbonatite complexes. The fluid inclusions study revealed similarities to the evolutionary trend of the Seligdar carbonatites that included changes of the hydrothermal solutions from highly concentrated chloride to medium–low concentrated chloride-sulphate and oxidized carbonate-ferrous.

Keywords

Mineralogy Fluid inclusion study Dolomitic carbonatites Ust-Chulman Seligdar deposit Nimnyrskaya apatite zone Aldan shield Yakutia 

Notes

Acknowledgements

We are grateful to geologists A.V. Minakov from “Yakutskgeologiya” company, A.A. Kravchenko and A.I. Ivanov from Diamond and Precious Metal Geology Institute, SB RAS for the field work organisation. The authors gratefully thank Dr. Maarten A.T.M. Broekmans and Prof. Dogan Paktunc for editorial handling and comments and Prof. Franco Pirajno for reviewing the manuscript, which led to a significant improvement. Mineralogical studies were supported by the grant of the Russian Science Foundation No. 15-17-20036, the study of fluid inclusions was carried out according to the research project of the IGM SB RAS No. 0330-2016-0002. This work was supported by the Russian Science Foundation (RSF), grant # 15-17-20036.

References

  1. Armstrong J, Barnett R (2003) The association of Zn-chromite with diamondiferous lamprophyres and diamonds: unique compositions as a guide to the diamond potential of non-traditional diamond host rocks. Eighth International Kimberlite Conference, Victoria, Canada, 2003, Extended Abstracts Volume (CD-ROM), pp 1–3Google Scholar
  2. Borisenko AS (1977) Study of the salt composition of solutions of gas-liquid inclusions in minerals by cryometric method. Geol Geofiz 18:16–27 (Russian)Google Scholar
  3. Borisenko AS, Borovikov AA, Vasyukova EA, Pavlova GG, Ragozin AL, Prokopyev IR, Vladykin NV (2011) Oxidized magmatogene fluids: metal-bearing capacity and role in ore formation. Russ Geol Geophys 52:144–164CrossRefGoogle Scholar
  4. Boyarko GY (1983) Geological and geochemical features of the Seligdar apatite deposits. PhD thesis, University of Tomsk/RU, 121 pp. (in Russian)Google Scholar
  5. Chakhmouradian AR, Reguir EP, Zaitsev AN, Couëslan C, Xu C, Kynický J, Mumin AH, Yang P (2017) Apatite in carbonatitic rocks: Compositional variation, zoning, element partitioning and petrogenetic significance. Lithos 274/275:188–213CrossRefGoogle Scholar
  6. Chomich VG, Boriskina NG (2010) Structural position of large gold ore districts in the Central Aldan (Yakutia) and Argun (Transbaikalia) superterranes. Russ Geol Geophys 51:661–671CrossRefGoogle Scholar
  7. Doroshkevich AG, Wall F, Ripp GS (2007) Calcite-bearing dolomite carbonatite dykes from Veseloe, North Transbaikalia, Russia and possible Cr-rich mantle xenoliths. Mineral Petrol 90:19–49CrossRefGoogle Scholar
  8. Egin VI, Kichigin LN (1973) Characteristics and prospects of apatite mineralization in the Central Aldan. News Yakutia Geol 3:75–80 (Russian)Google Scholar
  9. Entin AR, Tyan OA (1984) Before-carbonatite step of formation of apatite deposits of Seligdar type (Aldan). USSR SB RAS, Yakutsk p. 28. (in Russian)Google Scholar
  10. Ernst RE, Bell K (2010) Large igneous provinces (LIPs) and carbonatites. Mineral Petrol 98:55–76CrossRefGoogle Scholar
  11. Ernst RE, Hamilton MA, Söderlund U, Hanes JA, Gladkochub DP, Okrugin AV, Kolotilina T, Mekhonoshin AS, Bleeker W, LeCheminant AN, Buchan KL, Chamberlain KR, Didenko AN (2016) Long-lived connection between southern Siberia and northern Laurentia in the Proterozoic. Nat Geosci 9:464–469CrossRefGoogle Scholar
  12. Gladkochub DP, Donskaya TV, Ernst R, Mazukabzov AM, Sklyarov EV, Pisarevsky SA, Wingate M, Söderlund U (2012) Proterozoic basic magmatism of the Siberian craton: main stages and their geodynamic interpretation. Geotectonics 46(4):273–284CrossRefGoogle Scholar
  13. Harlov DE, Förster HJ (2003) Fluid-induced nucleation of REE phosphate minerals in apatite: nature and experiment. Part II. Fluorapatite. Am Mineral 88:1209–1229CrossRefGoogle Scholar
  14. Harlov DE, Förster HJ, Nijland TG (2002) Fluid induced nucleation of REE-phosphate minerals in apatite: nature and experiment. Part I. Chlorapatite. Am Mineral 87:245–261CrossRefGoogle Scholar
  15. Harlov DE, Wirth R, Förster HJ (2005) An experimental study of dissolution-reprecipitation in fluorapatite: fluid infiltration and the formation of monazite. Contrib Mineral Petrol 150:268–286CrossRefGoogle Scholar
  16. Hogarth DD (1989) Pyrochlore, apatite and amphibole: distinctive minerals in carbonatite. In: Bell K (ed) Carbonatites: genesis and evolution: pp 105–148Google Scholar
  17. Johan Z, Ohnenstetter D (2010) Zincochromite from the Guaniamo River diamondiferous placer, Venezuela: evidence of its metasomatic origin. Can Mineral 48:361–374CrossRefGoogle Scholar
  18. Lindsley DH (1991) Experimental studies of oxide minerals. In: Lindsley DH (ed) Oxide minerals: petrologic and magnetic significance. Rev Mineral (25):69–106Google Scholar
  19. Mekhonoshin AS, Ernst R, Soderlund U, Hamilton MA, Kolotilin ATB, Izokh AE, Polyakov GV, Tolstykh ND (2016) Relationship between platinum-bearing ultramafic-mafic intrusions and large igneous provinces (exemplified by the Siberian craton). Russ Geol Geophys 57(5):822–833CrossRefGoogle Scholar
  20. Meyer HOA, Boyd FR (1972) Composition and origin of crystalline inclusions in natural diamonds. Geochim Cosmochim Acta 36:1255–1273CrossRefGoogle Scholar
  21. Prokopyev IR, Borisenko AS, Borovikov AA, Pavlova GG (2016) Origin of REE-rich ferrocarbonatites in southern Siberia (Russia): implications based on melt and fluid inclusions. Mineral Petrol 110(6):845–859CrossRefGoogle Scholar
  22. Prokopyev IR, Doroshkevich AG, Ponomarchuk AV, Sergeev SA (2017) Mineralogy, age and genesis of apatite-dolomite ores at the Seligdar apatite deposit (Central Aldan, Russia). Ore Geol Rev 81:296–308CrossRefGoogle Scholar
  23. Ramdohr P (1945) Myrmekitische Verwachsungen Von Erzen. Neues Jahrbuch der Min. Beil-Bd 79 A:161–191Google Scholar
  24. Roedder E (1984) Fluid inclusions, reviews in mineralogy, v.12. Mineralogical Society of AmericaGoogle Scholar
  25. Shokhonova MN, Donskaya TV, Gladkochub DP, Mazukabzov AM, Paderin IP (2010) Paleoproterozoic basaltoids in the North Baikal volcanoplutonic belt of the Siberian craton: age and petrogenesis. Russ Geol Geophys 51:815–832CrossRefGoogle Scholar
  26. Sitnikova MA, Zaitsev AN, Chakhmourodian AR, Pakhomovsky YaA, Wall F (2001) Ba-Sr-REE mineralisation in the Sallanlatvi carbonatites, Kola Peninsula, Russia as a key to understanding the evolution of the late stage carbonatites. Abstract of EUG XI, Strasbourg, p 492Google Scholar
  27. Smirnov FL, Marshintsev ZK, Moskvitina AV et al. (1976) Typomorphic features of apatite deposits and occurrences of the Aldan Shield. Phosphorus Geochemistry and mineralogy characteristics of apatite. Yakutsk, USSR SB RAS, pp 5–31 (in Russian)Google Scholar
  28. Tropper P, Manning CE, Harlov DE (2011) Solubility of CePO4 monazite and YPO4 xenotime in H2O and H2O-NaCl at 800 °C and 1 GPa: implications for REE and Y transport during high-grade metamorphism. Chem Geol 282:58–66CrossRefGoogle Scholar
  29. Wall F, Zaitsev AN (eds) (2004) Phoscorites and carbonatites from mantle to mine: the key example of the Kola Alkaline province. The Mineralogical Society of Great Britain and Ireland, London, p 498Google Scholar
  30. Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Mineral (95):185–187Google Scholar
  31. Williams-Jones AE, Migdisov AA, Samson IM (2012) Hydrothermal mobilization of the rare earth elements—a tale of “Ceria” and “Yttria”. Elements 8:355–360CrossRefGoogle Scholar
  32. Zaitsev AI, Entin AR, Nenashev NI, Lazebnik KA, Туаn OA (1992) Geochronology and isotope geochemistry of carbonatites from Yakutia. YSC SB RAS, Yakutsk p 246Google Scholar

Copyright information

© Springer-Verlag GmbH Austria 2017

Authors and Affiliations

  • Ilya R. Prokopyev
    • 1
    • 2
  • Anna G. Doroshkevich
    • 1
    • 3
  • Anna A. Redina
    • 1
  • Andrey V. Obukhov
    • 2
  1. 1.Institute of Geology and Mineralogy SB RASNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia
  3. 3.Geological Institute of SB RASUlan-UdeRussia

Personalised recommendations