Advertisement

Mineralogy and Petrology

, Volume 112, Issue 2, pp 199–217 | Cite as

An experimental investigation of Na incorporation in cordierite in low P/high T metapelites

  • Peter Tropper
  • Stefan Wyhlidal
  • Udo A. Haefeker
  • Peter W. Mirwald
Original Paper
  • 153 Downloads

Abstract

The aim of this experimental study was to investigate the incorporation of Na in cordierite in metapelites as a function of temperature and pressure using natural quartzphyllite rocks as starting materials. The experiments were performed in a hydrothermal apparatus as well as a piston-cylinder apparatus with two natural quartzphyllite samples, which represent the protolith rocks of the hornfelses from the Brixen Granite contact aureole near Franzensfeste. Sample W shows high muscovite contents (57 wt%) and only accessory plagioclase while sample SP5 has high plagioclase (16 wt%) and lower muscovite contents (20 vol%). The experiments were done dry at pressures of 0.15, 0.3 and 0.6 GPa in a temperature range of 550 °C to 780 °C. The Na content of the newly formed cordierites shows a systematic variation and decreases linearly with increasing temperatures and no influence of pressure and melting on the Na contents of cordierite was observed. The experiments also show that the difference in mineral assemblage considerably shifts the obtained Na contents of cordierite. The P-independent temperature correlations for both sets of experiments can be described with the linear relationships: T (°C) = (Na [apfu] – 0.4052)/(−0.000487); R2 = 0.96; (±20 °C, calibration W) and T (°C) = (Na [apfu] – 0.3671)/(−0.000383); R2 = 0.94; (±15 °C, calibration SP5). The difference between the two temperatures is large and the SP5 experiments yield temperatures that are up to 100 °C higher. This is not unexpected since theoretical phase relations in the system NMASH predict different Na contents depending on the buffering assemblage (plagioclase vs. paragonite). On the other hand these T differences could also reflect disequilibrium behaviour in the SP5 experiments. Detailed micro-Raman spectroscopic investigations reveal that cordierites from both experiments show disordered structures but the SP5 experiments show a much higher degree of Si-Al disorder and the elevated Na contents could reflect this disequilibrium behaviour. Preliminary geothermometric calculations using the data from the W experiments are in very good agreement with T estimates from conventional geothermometry in metapelitic contact aureoles as well as high-grade migmatic gneisses from the literature.

Keywords

Na in cordierite Minor element geothermometry Quartzphyllite Hydrothermal apparatus Piston cylinder 

Notes

Acknowledgements

Bernhard Sartory is thanked for his assistance on the EPMA. The help of Jürgen Konzett with the experiments, Waltraud Wertl with XRD, Christoph Hauzenberger with XRF and Clivia Hejny with Raman spectroscopy and TGA is gratefully acknowledged. Bastian Joachim is also thanked for his help with Raman band fitting. The authors are grateful to Silvio Ferrero and three anonymous reviewers for their valuable and constructive comments, and Christoph Hauzenberger and Lutz Nasdala for the editorial handling of the manuscript. The financial support through the FWF (Austrian Science Fund) project P 17878-N10 to P.T. is gratefully acknowledged.

Supplementary material

710_2017_522_MOESM1_ESM.xlsx (51 kb)
ESM 1 (XLSX 50 kb)

References

  1. Acquafredda P, Bargossi GM, Caggianelli A, Rottura A (1997) Emplacement depths of Permian granitoids from central-eastern Southern Alps: estimates from hornblende-plagioclase thermobarometry. Mineral Petrogr Acta 40:45–53Google Scholar
  2. Armbruster T (1986) Role of sodium in the structure of low-cordierite: a single-crystal x-ray study. Am Mineral 71:746–757Google Scholar
  3. Bhattacharya A, Mazumdar AC, Sen SK (1988) Fe-Mg mixing in cordierite: constraints from natural data and implications for cordierite-garnet geothermometry in granulites. Am Mineral 73:338–344Google Scholar
  4. Benisek A, Dachs E, Kroll H (2010) A ternary feldspar-mixing model based on calorimetric data: development and application. Contrib Mineral Petr 160:327–337CrossRefGoogle Scholar
  5. Benisek A, Kroll H, Cemic L (2004) New developments in two-feldspar thermometry. Am Mineral 89:1496–1504CrossRefGoogle Scholar
  6. Bertoldi C, Proyer A, Garbe-Schönberg D, Behrens H, Dachs E (2004) Comprehensive chemical analyses of natural cordierites: implications for exchange mechanisms. Lithos 78:389–409CrossRefGoogle Scholar
  7. Cerny P, Povondra P (1966) Beryllian cordierite from Vezna Na, K, Be, Al. Neues Jb Miner Monat 44:36–44Google Scholar
  8. Cohen JP, Ross FK, Gibbs GV (1977) An X-ray and neutron diffraction study of hydrous low cordierite. Am Mineral 62:67–78Google Scholar
  9. Damon PE, Kulp JL (1958) Excess helium and argon in beryl and other minerals. Am Mineral 43:433–459Google Scholar
  10. Dachs E (1998) PET: petrological elementary tools for MATHEMATICA. Comput Geosci 24:219–235CrossRefGoogle Scholar
  11. Dachs E (2004) PET petrological elementary tools for MATHEMATICA: an update. Comput Geosci 30:173–182CrossRefGoogle Scholar
  12. Daniels P (1992) Structural effects of the incorporation of large-radius alkalis in high cordierite. Am Mineral 77:407–411Google Scholar
  13. Goldman DS, Rossman GR, Dollase WA (1977) Channel constituents in cordierite. Am Mineral 62:1144–1157Google Scholar
  14. Güttler B, Salje E, Putnis A (1989) Structural states of Mg Cordierite III: infrared spectroscopy and the nature of the hexagonal-modulated transition. Phys Chem Mineral 16:365–373Google Scholar
  15. Haefeker U, Kaindl R, Tropper P (2012) Semi-quantitative determination of the Fe/Mg ratio in synthetic cordierite using Raman spectroscopy. Am Mineral 97:1662–1669CrossRefGoogle Scholar
  16. Harley SL, Thompson P, Hensen BJ, Buick IS (2002) Cordierite as a sensor of fluid conditions in high-grade metamorphism and crustal anatexis. J Metamorph Geol 20:71–86CrossRefGoogle Scholar
  17. Henry DJ, Guidotti CV, Thomson JA (2005) The Ti-saturation surface for low-to-medium pressure metapelitic biotites: implications for geothermometry and Ti-substitution mechanisms. Am Mineral 90:316–328CrossRefGoogle Scholar
  18. Kaindl R, Többens D, Haefeker U (2011) Quantum-mechanical calculations of the Raman spectra of Mg- and Fe-cordierite. Am Mineral 96:1568–1574CrossRefGoogle Scholar
  19. Kalt A, Altherr R, Ludwig T (1998) Contact metamorphism in pelitic rocks on the island of Kos (Greece, Eastern Aegean Sea): a test for the Na-in-cordierite thermometer. J Petrol 59:663–668CrossRefGoogle Scholar
  20. Knop E (1996) Experimentelle Kalibrierung des Na-in-Cordierit-Thermometers. Mitteilungen der Österreichischen Mineralogischen Gesellschaft 141:127Google Scholar
  21. Knop E, Mirwald PW (2000) Cordierite as a monitor of fluid and melt sodium activity in metapelites, migmatites and granites: constraints from incorporation experiments. J Conf Abstr 5:58Google Scholar
  22. Knop E, Mirwald PW (1998) Sodic cordierites: comparison of natural data and incorporation experiments. Mitteilungen der Österreichischen Mineralogischen Gesellschaft 143:316–321Google Scholar
  23. Kolesov BA, Geiger CA (2000) Cordierite II: the role of CO2 and H2O. Am Mineral 85:1265–1274CrossRefGoogle Scholar
  24. McMillan P, Putnis A, Carpenter MA (1984) A raman-spectroscopic study of Al-Si ordering in synthetic magnesium cordierite. Phys Chem Mineral 10:256–260CrossRefGoogle Scholar
  25. Medenbach O, Maresch WV, Mirwald PW, Schreyer W (1980) Calibration curve for the variation of refractive index of synthetic Mg-Cordierite with H2O content. Am Mineral 65:367–373Google Scholar
  26. Mirwald PW (1983) Crystal chemical effects of sodium on the incorporation of H2O and CO2 in Mg-cordierite. Terra Cognita 3:163Google Scholar
  27. Mirwald PW (1986) Ist Cordierit ein Geothermometer? Fortschr Mineral 64:113Google Scholar
  28. Mirwald PW (1999) Sodium incorporation into cordierite. Eur J Mineral 11, Beiheft 1:157Google Scholar
  29. Mirwald PW (2000) The incorporation of H2O and CO2 in cordierite at varying sodium content under subsolidus conditions. Eur J Mineral 12, Beiheft 1:128Google Scholar
  30. Mirwald PW, Scola M, Tropper P (2008) Experimental study on the incorporation of Na in Mg-cordierite in the presence of different fluids (NaOH, NaCl-H2O, albite-H2O). Geophys Res Abstr 10:EGU2008-A-04149Google Scholar
  31. Mirwald PW, Knop E (1995) Der Einfluß der Kanalkomponenten H2O, CO2 und Na+ auf die obere Stabilität von Mg-Cordierit. Eine experimentelle Pilotstudie und ihre Bedeutung für das Granat-Cordierit-Geobarometer. Geologisch-Paläontologische Mitteilungen (Universität Innsbruck) 20:153–164Google Scholar
  32. Mirwald PW, Tropper P (2015) Structural disequilibrium in cordierites from long-duration experiments using crystal chemical constraints. Mitt Österr Miner Ges 161:88Google Scholar
  33. Mirwald PW, Maresch WV, Schreyer W (1979) Der Wassergehalt von Mg-Cordierit zwischen 500 und 800°C sowie 0,5 und 11 Kbar. Fortschr Mineral 57:101Google Scholar
  34. Myashiro A (1957) Cordierite-indialite relations. Am J Sci 255:43–62CrossRefGoogle Scholar
  35. Newton RC (1972) An experimental determination of the high-pressure stability limits of magnesian cordierite under wet and dry conditions. J Geol 80:398–420CrossRefGoogle Scholar
  36. Perchuk LL, Lavrent’eva IV (1983) Experimental investigation of exchange equilibria in the system cordierite-garnet-biotite. In: Saxena SK (ed.) Kinetics and Equilibrium in Mineral Reactions. New York: Springer, 199–239Google Scholar
  37. Poon WCK, Putnis A, Salje E (1990) Structural states of Mg cordierite: IV. Raman spectroscopy and local order parameter behaviour. J Phys Condens Mat 2:6361–6372CrossRefGoogle Scholar
  38. Putnis A. (1980) Order-modulated structures and the thermodynamics of cordierite reactions. Nature 287:128–131Google Scholar
  39. Putnis A, Salje E, Redfern SAT, Fyfe CA, Strobl H (1987) Structural States of Mg-Cordierite I: Order Parameters from Synchrotron X-Ray and NMR Data. Phys Chem Mineral 14:446–454CrossRefGoogle Scholar
  40. Ring U, Richter C (1994) The Variscan structural and metamorphic evolution of the eastern Southalpine basement. J Geol Soc Lond 151:755–766CrossRefGoogle Scholar
  41. Schreyer W (1965) Synthetische und natürliche Cordierite I: Mischkristallbildung synthetischer Cordierite und ihre Gleichgewichtsbeziehungen. Neues Jb Miner Monat 103:35–79Google Scholar
  42. Schreyer W (1985) Experimental studies on cation substitions and fluid incorporation in cordierite. Bull Mineral 108:273–291Google Scholar
  43. Schreyer W, Yoder HS (1964) The system Mg-cordierite-H2O and related rocks. Neues Jb Miner Abh 101:271–342Google Scholar
  44. Spear FS, Kohn MJ, Cheney JT (1999) P-T paths from anatectic pelites. Contrib Mineral Petr 134:17–32CrossRefGoogle Scholar
  45. Thompson P, Harley SL, Carrington DP (2002) Sodium and potassium in cordierite - a potential thermometer for melts? Eur J Mineral 14:459–469CrossRefGoogle Scholar
  46. Tropper P, Deibl I, Finger F, Kaindl R (2006) P–T–t evolution of spinel–cordierite–garnet gneisses from the Sauwald Zone (Southern Bohemian Massif, Upper Austria): is there evidence for two independent late-Variscan low-P /high-T events in the Moldanubian Unit? Int J Earth Sci 95:1019–1037CrossRefGoogle Scholar
  47. Ulmer P (1993) Norm-program for cation and oxygen mineral norms. Computer Library IKPETH, ZürichGoogle Scholar
  48. Vielzeuf D, Holloway JR (1988) Experimental determination of the fluid-absent melting relation in the pelitic system. Contrib Mineral Petr 98:257–276CrossRefGoogle Scholar
  49. Visona D (1995) Polybaric evolution of calc-alkaline magmas: the Dioritic belt of the Bressanone-Chiusa igneous complex. Mem Sci Geol 47:111–124Google Scholar
  50. Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Mineral 95:185–187CrossRefGoogle Scholar
  51. Wolfsdorff P, Schreyer W (1992) Synthesis of sodian cordierites in the system Na2O-MgO-Al2O3-SiO2. Neues Jb Miner Monat 2:80–96Google Scholar
  52. Wyhlidal S, Tropper P, Thöny WF, Kaindl R (2009) Minor element- and carbonaceous material thermometry of high-grade metapelites from the Sauwald Zone, Southern Bohemian Massif (Upper Austria). Miner Petrol 97:61–74CrossRefGoogle Scholar
  53. Wyhlidal S, Thöny WF, Tropper P, Mirwald PW (2008) Experimental constraints on the Na-in-cordierite thermometer using natural quartzphyllites as starting materials: the role of P, a(H2O) and Na2O contents of the starting materials. In: Konzett J, Tessadri R, Tropper P (eds) EMPG XII – 12th International Conference on Experimental Mineralogy, Petrology and Geochemistry, September 7–10, 2008. Innsbruck Univ Press, vol 8, p 118Google Scholar
  54. Wyhlidal S, Thöny WF, Tropper P, Klötzli U, Mair V (2010) U-PB Geochronology of detrital zircons from a contact metamorphic Brixen Quartzphyllite (South-Tyrol, Italy): Evidence for a Complex pre-Variscan evolution of the Soutalpine basement. Swiss J Geosci 103:273–281CrossRefGoogle Scholar
  55. Wyhlidal S, Thöny WF, Tropper P, Kaindl R, Hauzenberger C, Mair V (2012) Petrology of contact metamorphic metapelites from the southern rim of the Permian Brixen Granodiorite (South Tyrol, Italy). Miner Petrol 106:173–191CrossRefGoogle Scholar
  56. Yakubovich OV, Massa V, Pekov IV, Gavrilenko PG, Chukanov NV (2004) Crystal structure of the Na-, Ca-, Be-cordierite and crystallochemical regularities in the cordierite-sekaninaite series. Cryst Report 49:953–963CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria 2017

Authors and Affiliations

  1. 1.Institute of Mineralogy and Petrography, Faculty of Geo- and Atmospheric SciencesUniversity of InnsbruckInnsbruckAustria
  2. 2.Austrian Institute of TechnologySeibersdorfAustria
  3. 3.Material-Technology Innsbruck (MTI)University of InnsbruckInnsbruckAustria

Personalised recommendations