Mineralogy and Petrology

, Volume 112, Issue 1, pp 123–134 | Cite as

Hermannjahnite, CuZn(SO4)2, a new mineral with chalcocyanite derivative structure from the Naboko scoria cone of the 2012–2013 fissure eruption at Tolbachik volcano, Kamchatka, Russia

  • Oleg I. Siidra
  • Evgeny V. Nazarchuk
  • Atali A. Agakhanov
  • Evgeniya A. Lukina
  • Anatoly N. Zaitsev
  • Rick Turner
  • Stanislav K. Filatov
  • Igor V. Pekov
  • Gennady A. Karpov
  • Vasiliy O. Yapaskurt
Original Paper
  • 139 Downloads

Abstract

A new mineral hermannjahnite, ideally CuZn(SO4)2, was found in the sublimates of Saranchinaitovaya fumarole, Naboko scoria cone, where the recent Fissure Tolbachik Eruption occurred in 2012–2013. The cotype specimen was found in the Arsenatnaya fumarole, on the Second scoria cone of the Great Tolbachik Fissure Eruption (GTFE 1975–1976). The mineral is named in honour of Hermann Arthur Jahn. Jahn-Teller effect is pronounced in the structure of hermannjahnite. The empirical formula of the holotype hermannjahnite, calculated on the basis of 8 O apfu is: Cu1.00(Zn0.43Cu0.31Mg0.25)∑0.99S2.00O8. Hermannjahnite is optically biaxial (+), α = 1.642(2), β = 1.652(2), γ = 1.675(2) (589 nm) with 2 V (calc.) = 67.6°. Hermannjahnite is monoclinic, P21/n, a = 4.8076(2), b = 8.4785(3), c = 6.7648(3) Å, β = 93.041(3) °, V = 275.35(2) Å3, Z = 2, R 1 = 0.047. The eight strongest lines of the X-ray powder diffraction pattern are (I-d-hkl): 31–4.231-(020), 100–4.177-(110), 72–3.630-(11–1), 25–3.486-(111), 29–2.681-(11–2), 69–2.648-(02–2), 29–2.561-(112), 63–2.428-(130). The structure of hermannjahnite is isotypic to that of dravertite, CuMg(SO4)2, and represents a monoclinically distorted chalcocyanite CuSO4 structure. Crystallographic and structural data on a natural sample of chalcocyanite are provided. Zinc is very close in ionic radii to copper, but the Jahn-Teller effect on Cu2+ causes the segregation of these elements over two symmetrically independent crystallographic sites in hermannjahnite. Bond-length distortion parameters (∆oct) were evaluated for 44 different MO6 (M = Cu, Zn) octahedra in Cu, Zn oxysalt minerals containing Cu- or/and Zn-dominated octahedra. In hermannjahnite CuO6 octahedra exhibit a value of ∆oct × 103 = 14.71, whereas ∆oct × 103 = 0.83 is calculated for ZnO6. In chalcocyanite CuO6 octahedra have a value of ∆oct × 103 = 8.25. Relationships between calculated ∆oct parameters and occupancy of MO6 (M = Cu, Zn) octahedra by Cu2+ and Zn2+ cations in various minerals are evaluated and discussed.

Keywords

Hermannjahnite Chalcocyanite Copper Zinc Jahn-Teller effect Distortion parameters Sulphates Fumarolic minerals Dravertite Tolbachik fissure eruption 2012–2013 Naboko scoria cone 

Notes

Acknowledgements

We are grateful to Christian L. Lengauer, an anonymous reviewer, editor-in-chief Lutz Nasdala and handling editor Nikita Chukanov for their valuable comments. Technical support by the St. Petersburg State University X-ray Diffraction and Geomodel Resource Centres is gratefully acknowledged. This work was financially supported by the Russian Science Foundation through grant 16-17-10085.

Supplementary material

710_2017_520_MOESM1_ESM.docx (15 kb)
Table 1S (DOCX 15 kb)
710_2017_520_MOESM2_ESM.docx (14 kb)
Table 2S (DOCX 14 kb)
710_2017_520_MOESM3_ESM.docx (14 kb)
Table 3S (DOCX 13 kb)
710_2017_520_MOESM4_ESM.docx (14 kb)
Table 4S (DOCX 14 kb)

References

  1. Adiwidjaja G, Friese K, Klaska KH, Schlueter J (1996) The crystal structure of christelite Zn3Cu2(SO4)2(OH)6·4(H2O). Z Kristallogr 211:518–521Google Scholar
  2. Anthony JW, Bideaux RA, Bladh KW, Nichols MC (2003) Handbook of Mineralogy. V. Borates, carbonates, sulfates. Mineral data publishing, TucsonGoogle Scholar
  3. Braithwaite RSW, Pritchard RG, Paar WH, Pattrick RAD (2005) A new mineral, zincolibethenite, CuZnPO4OH, a stoichiometric species of specific site occupancy. Mineral Mag 69:145–153CrossRefGoogle Scholar
  4. Brown ID, Altermatt D (1985) Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Crystallogr B41:244–247CrossRefGoogle Scholar
  5. Burns PC, Hawthorne FC (1995) Coordination geometry pathways in Cu2+ oxysalt minerals. Can Mineral 33:889–905Google Scholar
  6. Burns PC, Hawthorne FC (1996) Static and dynamic Jahn-Teller effects in Cu2+ oxysalt minerals. Can Mineral 34:1089–1105Google Scholar
  7. Burns PC, Pluth JJ, Smith JV, Eng P, Steele I, Housley RM (2000) Quetzalcoatlite: a new octahedral - tetrahedral structure from 2×2×40 μm3 crystal at the advanced photon source - GSE-CARS facility. Am Mineral 85:604–607CrossRefGoogle Scholar
  8. Chaplygin IV, Lavrushin VY, Dubinina EO, Bychkova YV, Inguaggiato S, Yudovskaya MA (2016) Geochemistry of volcanic gas at the 2012-13 new Tolbachik eruption, Kamchatka. J Volcanol Geoth Res 323:186–193CrossRefGoogle Scholar
  9. Chukanov NV, Pushcharovsky DY, Zubkova NV, Pekov IV, Pasero M, Merlino S, Moeckel S, Rabadanov MK, Belakovskiy DI (2007) Zincolivenite CuZn(AsO4)(OH): a new adamite-group mineral with ordered distribution of Cu and Zn. Doklady Earth Sci 415:841–845Google Scholar
  10. Danisi RM, Armbruster T, Lazic B, Vulic P, Kaindl R, Dimitrijevic R, Kahlenberg V (2013) In situ dehydration behavior of veszelyite (Cu,Zn)2Zn(PO4)(OH)3·2(H2O): A single-crystal X-ray study. Am Mineral 98:1261–1269CrossRefGoogle Scholar
  11. Faraone D, Sabelli C, Zanazzi PF (1967) Su du solfati basici idrati: serpierite e devillite. Rend Acc Naz Lincei 43:369–382Google Scholar
  12. Fedotov SA, Markhinin YK (eds) (1983) The Great Tolbachik fissure eruption. Cambridge University Press, New YorkGoogle Scholar
  13. Filatov SK, Karpov GA, Shablinskii AP, Krivovichev SV, Vergasova LP, Antonov AV (2016) Ivsite, Na3H(SO4)2, a new mineral from volcanic exhalations of fumaroles of the fissure Tolbachik eruption of the 50th anniversary of the Institute of Volcanology and Seismology, far East Branch, Russian Academy of Sciences. Dokl Earth Sci 468:632–635CrossRefGoogle Scholar
  14. Ghose S, Leo SR, Wan C (1974) Structural chemistry of copper and zinc minerals. Part I. Veszelyite, (Cu0.5Zn0.5)2ZnPO4NOH)3(H2O)3 : a novel type of sheet structure and crystal chemistry of copper-zinc substitution. Am Mineral 59:573–581Google Scholar
  15. Gorelova LA, Vergasova LP, Krivovichev SV, Avdontseva EY, Moskaleva SV, Karpov GA, Filatov SK (2016) Bubnovaite, K2Na8Ca(SO4)6, a new mineral species with modular structure from the Tolbachik volcano, Kamchatka peninsula, Russia. Eur J Mineral 28:677–686CrossRefGoogle Scholar
  16. Harding MM, Kariuki BM, Cernik R, Cressey G (1994) The structure of aurichalcite, (Cu,Zn)5(OH)6(CO3)2, determined from a microcrystal. Acta Crystallogr B50:673–676CrossRefGoogle Scholar
  17. Hoffmann C, Armbruster T, Giester G (1997) Acentric structure (P3) of bechererite, Zn7Cu(OH)13(SiO(OH)3SO4). Am Mineral 82:1014–1018CrossRefGoogle Scholar
  18. Jahn HA, Teller E (1937) Stability of polyatomic molecules in degenerate electronic states. Proc R Soc Lon Ser-A 161:220–235CrossRefGoogle Scholar
  19. Karpov GA, Krivovichev SV, Vergasova LP, Chernyat'eva AP, Anikin LP, Moskaleva SV, Filatov SK (2013) Oxysulfates of copper, sodium, and potassium in the lava flows of the 2012-2013 Tolbachik fissure eruption. J Volcanol Seismol 7:362–370CrossRefGoogle Scholar
  20. Kovrugin VM, Siidra OI, Colmont M, Mentré O, Krivovichev SV (2015) Emulating exhalative chemistry: synthesis and structural characterization of ilinskite, Na[Cu5O2](SeO3)2Cl3, and its K-analogue. Miner Petrol 109:421–430CrossRefGoogle Scholar
  21. Kovrugin VM, Colmont M, Siidra OI, Gurzhiy VV, Krivovichev SV, Mentré O (2017) Pathways for synthesis of new selenium-containing oxocompounds: chemical vapor transport reactions, hydrothermal techniques and evaporation method. J Cryst Growth 457:307–313CrossRefGoogle Scholar
  22. Krause W, Bellendorff K, Bernhardt HJ, McCammon C, Effenberger H, Mikenda W (1998) Crystal chemistry of tsumcorite-group minerals. New data on ferrilotharmeyerite, tsumcorite, thometzekite, mounanaite, helmutwinklerite, and a redefinition of gartrellite. Eur J Mineral 10:179–206CrossRefGoogle Scholar
  23. Malcherek T, Schlueter J (2013) The keyite crystal structure, revisited. Z Kristallogr 228:620–628Google Scholar
  24. Mellini M, Merlino S (1978) Ktenasite, another mineral with (Cu,Zn)2(OH)3O)octahedral sheets. Z Kristallogr 147:129–140Google Scholar
  25. Nazarchuk EV, Siidra OI, Agakhanov AA, Lukina EA, Avdontseva EY, Vergasova LP, Filatov SK, Karpov GA (2015) Itelmenite, IMA2015-047. CNMNC newsletter no. 27. Mineral Mag 79:1229–1236Google Scholar
  26. Olmi F, Sabelli C, Trosti-Ferroni R (1995) The crystal structure of sabelliite. Eur J Mineral 7:1331–1337CrossRefGoogle Scholar
  27. Palache C, Berman H, Frondel C (1951) The system of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837–1892, 7th edn. Vol. II. John Wiley and Sons, Inc., New YorkGoogle Scholar
  28. Peacor DR, Dunn PJ, Ramik RA, Sturman BD, Zeihen LG (1985) Philipsburgite, a new copper zinc arsenate hydrate related to kipushite, from Montana. Can Mineral 23:255–258Google Scholar
  29. Pekov IV, Zubkova NV, Agakhanov AA, Yapaskurt VO, Chukanov NV, Belakovskiy DI, Sidorov EG, Pushcharovsky DY (2017) Dravertite, CuMg(SO4)2, a new mineral species from the Tolbachik volcano, Kamchatka, Russia. Eur J Mineral 29:323–330CrossRefGoogle Scholar
  30. Perchiazzi N (2006) Crystal structure determination and Rietveld refinement of rosasite and mcguinessite. Z Kristallogr Suppl 23:505–510CrossRefGoogle Scholar
  31. Piret P, Deliens M, Piret-Meunier J (1985) Occurrence and crystal structure of kipushite, a new copper-zinc phosphate from Kipushi, Zaire. Can Mineral 23:35–42Google Scholar
  32. Sabelli C, Zanazzi PF (1968) The crystal structure of serpierite. Acta Crystallogr B 24:1214–1221CrossRefGoogle Scholar
  33. Sheldrick GM (2015) Crystal structure refinement with SHELXL. Acta Crystallogr C71:3–8Google Scholar
  34. Siidra OI, Lukina EA, Nazarchuk EV, Depmeier W, Bubnova RS, Agakhanov AA, Avdontseva EY, Filatov SK, Kovrugin VM (2017) Saranchinaite, Na2Cu(SO4)2, a new exhalative mineral from Tolbachik volcano, Kamchatka, Russia, and a product of the reversible dehydration of kröhnkite, Na2Cu(SO4)2(H2O)2. Mineral Mag. doi: 10.1180/minmag.2017.081.037
  35. Toman K (1978) Ordering in olivenite-adamite solid solutions. Acta Crystallogr B 34:715–721CrossRefGoogle Scholar
  36. Vergasova LP, Filatov SK (2016) A study of volcanogenic exhalation mineralization. J Volcanol Seismol 10:71–85CrossRefGoogle Scholar
  37. Wildner M (1992) On the geometry of Co(II)O6 polyhedra in inorganic compounds. Z Kristallogr 202:51–70CrossRefGoogle Scholar
  38. Wildner M, Giester G (1988) Crystal structure refinements of synthetic chalcocyanite (CuSO4) and zincosite (ZnSO4). Miner Petrol 39:201–209CrossRefGoogle Scholar
  39. Williams PA, Leverett P, Birch WD, Hibbs DE, Kolitsch U, Mihajlovic T (2006) Zinc-rich zincolibethenite from Broken Hill, new South Wales. Aust J Mineral 12:3–7Google Scholar
  40. Zelenski ME, Zubkova NV, Pekov IV, Boldyreva MM, Pushcharovsky DY, Nekrasov AN (2011) Pseudolyonsite, Cu3(VO4)2, a new mineral species from the Tolbachik volcano, Kamchatka peninsula, Russia. Eur J Mineral 23:475–481CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria 2017

Authors and Affiliations

  • Oleg I. Siidra
    • 1
  • Evgeny V. Nazarchuk
    • 1
  • Atali A. Agakhanov
    • 2
  • Evgeniya A. Lukina
    • 1
  • Anatoly N. Zaitsev
    • 3
  • Rick Turner
    • 4
  • Stanislav K. Filatov
    • 1
  • Igor V. Pekov
    • 5
  • Gennady A. Karpov
    • 6
  • Vasiliy O. Yapaskurt
    • 5
  1. 1.Department of CrystallographySt. Petersburg State UniversitySt. PetersburgRussia
  2. 2.Fersman Mineralogical MuseumRussian Academy of ScienceMoscowRussia
  3. 3.Department of MineralogySt. Petersburg State UniversitySt. PetersburgRussia
  4. 4.The DreyWiltshireUK
  5. 5.Faculty of GeologyMoscow State UniversityMoscowRussia
  6. 6.Institute of Volcanology and SeismologyRussian Academy of SciencesPetropavlovsk-KamchatskiyRussia

Personalised recommendations