Platiniferous gold–tourmaline aggregates in the gold–palladium belt of Minas Gerais, Brazil: implications for regional boron metasomatism

  • Alexandre Raphael Cabral
  • Miguel Tupinambá
  • Armin Zeh
  • Bernd Lehmann
  • Michael Wiedenbeck
  • Michael Brauns
  • Rogerio Kwitko-Ribeiro
Short Communication
  • 109 Downloads

Abstract

The platiniferous gold–palladium belt of Minas Gerais, Brazil, forms an approximately 240-km-long, roughly north–south-trending domain that includes numerous auriferous lodes and platiniferous alluvium. The belt transects two Precambrian terranes, the Quadrilátero Ferrífero in the southern part, and the southern Serra do Espinhaço in the northern part. Both terranes were overprinted by regional fluid flow that led to tourmalinisation, with or without hematitisation, and precious-metal mineralisation. Here, we report the occurrence of coarse-grained gold–tourmaline aggregates and integrate recently obtained ages and tourmaline boron-isotope values published elsewhere. One type of aggregate is unique because it has patches that are close to stoichiometric PdPt, in which gold content varies from 2.5 to 33.5 at.%. The gold–tourmaline aggregates seem to be the ultimate expression of the boron metasomatism.

Keywords

Boron Metasomatism PdPt Gold–palladium belt Minas Gerais Brazil 

References

  1. Alkmim FF, Marshak S (1998) Transamazonian orogeny in the southern São Francisco craton region, Minas Gerais, Brazil: evidence for Paleoproterozoic collision and collapse in the Quadrilátero Ferrífero. Precambr Res 90:29–58CrossRefGoogle Scholar
  2. Alkmim FF, Martins-Neto MA (2012) Proterozoic first-order sedimentary sequences of the São Francisco craton, eastern Brazil. Mar Petroleum Geol 33:127–139CrossRefGoogle Scholar
  3. Alkmim FF, Pedrosa-Soares AC, Noce CM, Cruz SCP (2007) Sobre a evolução tectônica do orógeno Araçuaí–Congo Ocidental. Geonomos 15:25–43Google Scholar
  4. Almeida FFM (1977) O cráton do São Francisco. Rev Bras Geociê 7:285–295Google Scholar
  5. Almeida-Abreu PA, Renger FE (2007) Stratigraphy and facies of the southern Serra do Espinhaço, Minas Gerais, Brazil. Z Deut Ges Geowis 158:9–29Google Scholar
  6. Boiron M-C, Moissette A, Cathelineau M, Banks D, Monnin C, Dubessy J (1999) Detailed determination of palaeofluid chemistry: an integrated study of sulphate–volatile-rich brines and aquo-carbonic fluids in quartz veins from Ouro Fino (Brazil). Chem Geol 154:179–192CrossRefGoogle Scholar
  7. Cabral AR, Koglin N (2012) Hydrothermal fluid source constrained by Co/Ni ratios in coexisting arsenopyrite and tourmaline: the auriferous lode of Passagem, Quadrilátero Ferrífero of Minas Gerais, Brazil. Miner Petrol 104:137–145CrossRefGoogle Scholar
  8. Cabral AR, Zeh A (2015a) Detrital zircon without detritus: a result of 496-Ma-old fluid–rock interaction during the gold-lode formation of Passagem, Minas Gerais, Brazil. Lithos 212–215:415–427CrossRefGoogle Scholar
  9. Cabral AR, Zeh A (2015b) Celebrating the centenary of “The geology of central Minas Gerais, Brazil”: an insight from the Sítio Largo amphibolite. J Geol 123:337–354Google Scholar
  10. Cabral AR, Lehmann B, Tupinambá M, Schlosser S, Kwitko-Ribeiro R, de Abreu FR (2009) The platiniferous Au–Pd belt of Minas Gerais, Brazil, and genesis of its botryoidal Pt–Pd–Hg aggregates. Econ Geol 104:1265–1276CrossRefGoogle Scholar
  11. Cabral AR, Lehmann B, Tupinambá M, Wiedenbeck M, Brauns M (2011a) Geology, mineral chemistry and tourmaline B isotopes of the Córrego Bom Sucesso area, southern Serra do Espinhaço, Minas Gerais, Brazil: implications for Au–Pd–Pt exploration in quartzitic terrain. J Geochem Expl 110:260–277CrossRefGoogle Scholar
  12. Cabral AR, Radtke M, Munnik F, Lehmann B, Reinholz U, Riesemeier H, Tupinambá M, Kwitko-Ribeiro R (2011b) Iodine in alluvial platinum–palladium nuggets: evidence for biogenic precious-metal fixation. Chem Geol 281:125–132CrossRefGoogle Scholar
  13. Cabral AR, Wiedenbeck M, Koglin N, Lehmann B, de Abreu FR (2012a) Boron-isotopic constraints on the petrogenesis of hematitic phyllite in the southern Serra do Espinhaço, Minas Gerais, Brazil. Lithos 140–141:224–233CrossRefGoogle Scholar
  14. Cabral AR, Wiedenbeck M, Rios FJ, Seabra Gomes Jr AA, Rocha Filho OG, Jones RD (2012b) Talc mineralisation associated with soft hematite ore, Gongo Soco deposit, Minas Gerais, Brazil: petrography, mineral chemistry and boron-isotope composition of tourmaline. Mineral Deposita 47:411–424CrossRefGoogle Scholar
  15. Cabral AR, Zeh A, Koglin N, Seabra Gomes Jr AA, Viana DJ, Lehmann B (2012c) Dating the Itabira iron formation, Quadrilátero Ferrífero of Minas Gerais, Brazil, at 2.65 Ga: depositional U–Pb age of zircon from a metavolcanic layer. Precambr Res 204–205:40–45CrossRefGoogle Scholar
  16. Cabral AR, Eugster O, Brauns M, Lehmann B, Rösel D, Zack T, de Abreu FR, Pernicka E, Barth M (2013a) Direct dating of gold by radiogenic helium: testing the method on gold from Diamantina, Minas Gerais, Brazil. Geology 41:163–166CrossRefGoogle Scholar
  17. Cabral AR, Koglin N, Strauss H, Brätz H, Kwitko-Ribeiro R (2013b) Regional sulfate–hematite–sulfide zoning in the auriferous Mariana anticline, Quadrilátero Ferrífero of Minas Gerais, Brazil. Mineral Deposita 48:805–816CrossRefGoogle Scholar
  18. Cabral AR, Zeh A, Galbiatti HF, Lehmann B (2015a) Late Cambrian Au–Pd mineralization and Fe enrichment in the Itabira district, Minas Gerais, Brazil, at 496 Ma: constraints from U–Pb monazite dating of a jacutinga lode. Econ Geol 110:263–272CrossRefGoogle Scholar
  19. Cabral AR, Rios FJ, de Oliveira LAR, de Abreu FR, Lehmann B, Zack T, Laufek F (2015b) Fluid-inclusion microthermometry and the Zr-in-rutile thermometer for hydrothermal rutile. Geol Rundsch 104:513–519CrossRefGoogle Scholar
  20. Cassedanne JP, Alves JN (1992) Palladium and platinum from Córrego Bom Sucesso, Minas Gerais, Brazil. Miner Rec 23:471–474Google Scholar
  21. Chaves MLSC, Brandão PRG, Bühn B (2010) Monazita em veios de quartzo da Serra do Espinhaço Meridional (MG): mineralogia, idades LA-ICP-MS e implicações geológicas. Rev Bras Geociê 40:506–515Google Scholar
  22. Chemale F Jr, Dussin IA, Alkmim FF, Martins MS, Queiroga G, Armstrong R, Santos MN (2012) Unravelling a Proterozoic basin history through detrital zircon geochronology: the case of the Espinhaço Supergroup, Minas Gerais, Brazil. Gond Res 22:200–206CrossRefGoogle Scholar
  23. Correns CW (1932) Über die Diamantlagerstätten des Hochlandes von Diamantina, Minas Geraes, Brasilien. Z Prakt Geol 40:161–168,177–181Google Scholar
  24. de Oliveira EF, Castañeda C, Eeckhout SG, Gilmar MM, Kwitko-Ribeiro R, De Grave E, Botelho NF (2002) Infrared and Mössbauer study of Brazilian tourmalines from different geological environments. Am Mineral 87:1154–1163CrossRefGoogle Scholar
  25. Derby OA (1898) On the accessory elements of itacolumite, and the secondary enlargement of tourmaline. Am J Sci 5:187–192CrossRefGoogle Scholar
  26. Derby OA (1900) Notes on certain schists of the gold and diamond regions of eastern Minas Geraes, Brazil. Am J Sci 10:207–216CrossRefGoogle Scholar
  27. Dorr JVN (1969) Physiographic, stratigraphic and structural development of the Quadrilátero Ferrífero, Minas Gerais, Brazil. US Geol Surv Prof Pap 641-AGoogle Scholar
  28. Ferrand P (1894) L'or a Minas Geraes (Brésil). Imprensa Official do Estado de Minas Geraes, Ouro PretoGoogle Scholar
  29. Franz G, Morteani G, Rhede D (2015) Xenotime-(Y) formation from zircon dissolution–precipitation and HREE fractionation: an example from a metamorphosed phosphatic sandstone, Espinhaço fold belt (Brazil). Contrib Mineral Petrol 170:37. doi:10.1007/s00410-015-1191-y
  30. Gammons CH, Yu Y, Bloom MS (1993) Experimental investigation of the hydrothermal geochemistry of platinum and palladium: III. The solubility of Ag–Pd alloy + AgCl in NaCl/HCl solutions at 300 °C. Geochim Cosmochim Acta 57:2469–2479CrossRefGoogle Scholar
  31. Garda GM, Xavier RP, Cavalcanti JAD, Trumbull RB, Wiedenbeck M (2010) Significance of compositional and boron isotope variations in tourmaline of Passagem de Mariana gold mine, Quadrilátero Ferrífero, Minas Gerais, Brazil. Acta Miner Petrogr Abst Ser 6:483Google Scholar
  32. Goldschmidt VM, Hefter O (1933) Zur Geochemie des Selens. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, mathematisch-physikalische Klasse 1933:245–252Google Scholar
  33. Griffith WP (2003) Bicentenary of four platinum group metals. Part 1: rhodium and palladium – events surrounding their discoveries. Platinum Metals Rev 47:175–183Google Scholar
  34. Helmy HM, Ballhaus C, Fonseca ROC, Wirth R, Nagel T, Tredoux M (2013) Noble metal nanoclusters and nanoparticles precede mineral formation in magmatic sulphide melts. Nature Commun 4:2405. doi:10.1038/ncomms3405 CrossRefGoogle Scholar
  35. Henry DJ, Sun H, Slack JF, Dutrow BL (2008) Tourmaline in meta-evaporites and highly magnesian rocks: perspectives from Namibian tourmalinites. Eur J Mineral 20:889–904CrossRefGoogle Scholar
  36. Herz N (1978) Metamorphic rocks of the Quadrilátero Ferrífero, Minas Gerais, Brazil. US Geol Surv Prof Pap 641-CGoogle Scholar
  37. Hussak E (1898) Der goldführende, kiesige Quarzlagergang von Passagem im Minas Geraes, Brasilien. Z Prakt Geol 5:345–357Google Scholar
  38. Hussak E (1904) Über das Vorkommen von Palladium und Platin in Brasilien. Akad Wiss Wien Sitzungsber, Math-Naturwiss Kl 113:379–466Google Scholar
  39. Klemme S, Marschall HR, Jacob DE, Prowatke S, Ludwig T (2011) Trace-element partitioning and boron isotope fractionation between white mica and tourmaline. Can Mineral 49:165–176CrossRefGoogle Scholar
  40. Knauer LG, Schrank A (1993) A origem dos filitos hematíticos da Serra do Espinhaço Meridional, Minas Gerais. Geonomos 1:33–38CrossRefGoogle Scholar
  41. Kolb B, Müller S, Botts DB, Hart GLW (2006) Ordering tendencies in the binary alloys of Rh, Pd, Ir, and Pt: density functional calculations. Phys Rev B 74:144206CrossRefGoogle Scholar
  42. Konrad-Schmolke M, Halama R (2014) Combined thermodynamic–geochemical modeling in metamorphic geology: boron as tracer of fluid–rock interaction. Lithos 208–209:393–414CrossRefGoogle Scholar
  43. Konrad-Schmolke M, Halama R, Manea VC (2016) Slab mantle dehydrates beneath Kamchatka—yet recycles water into the deep mantle. Geochem Geophys Geosyst 17:2987–3007. doi:10.1002/2016GC006335 CrossRefGoogle Scholar
  44. Leake RC, Bland DJ, Styles MT, Cameron DG (1991) Internal structure of Au–Pd–Pt grains from South Devon, England, in relation to low-temperature transport and deposition. Trans Instn Min Metal (Sect B: Appl Earth Sci) 100:B159–B178Google Scholar
  45. Lüders V, Romer RL, Cabral AR, Schmidt C, Banks DA, Schneider J (2005) Genesis of itabirite-hosted Au–Pd–Pt-bearing hematite–(quartz) veins, Quadrilátero Ferrífero, Minas Gerais, Brazil: constraints from fluid inclusion infrared microthermometry, bulk crush-leach analysis and U–Pb systematics. Mineral Deposita 40:289–306CrossRefGoogle Scholar
  46. Machado N, Schrank A, Noce CM, Gauthier G (1996) Ages of detrital zircon from Archean–Paleoproterozoic sequences: implications for greenstone belt setting and evolution of a Transamazonian foreland basin in Quadrilátero Ferrífero, Southeast Brazil. Earth Planet Sci Lett 141:259–276CrossRefGoogle Scholar
  47. Marschall HR, Jiang S-Y (2011) Tourmaline isotopes: no element left behind. Elements 7:313–319CrossRefGoogle Scholar
  48. Marschall HR, Meyer C, Wunder B, Ludwig T, Heinrich W (2009) Experimental boron isotope fractionation between tourmaline and fluid: confirmation from in situ analyses by secondary ion mass spectrometry and from Rayleigh fractionation modelling. Contrib Mineral Petrol 158:675–681CrossRefGoogle Scholar
  49. Martins-Neto MA (1996) Lacustrine fan-deltaic sedimentation in a Proterozoic rift basin: the Sopa-Brumadinho tectonosequence, southeastern Brazil. Sediment Geol 106:65–96CrossRefGoogle Scholar
  50. Martins-Neto MA (2000) Tectonics and sedimentation in a Paleo/Mesoproterozoic rift-sag basin (Espinhaço basin, southeastern Brazil). Precambr Res 103:147–173CrossRefGoogle Scholar
  51. McDonald I, Vaughan DJ, Tredoux M (1995) Platinum mineralization in quartz veins near Naboomspruit, central Transvaal. S Afr J Geol 98:168–175Google Scholar
  52. McDonald I, Ohnenstetter D, Rowe JP, Tredoux M, Pattrick RAD, Vaughan DJ (1999) Platinum precipitation in the Waterberg deposit, Naboomspruit, South Africa. S Afr J Geol 102:184–191Google Scholar
  53. Meyer C, Wunder B, Meixner A, Romer RL, Heinrich W (2008) Boron-isotope fractionation between tourmaline and fluid: an experimental re-investigation. Contrib Mineral Petrol 156:259–267CrossRefGoogle Scholar
  54. Moraes LJ, Guimarães D (1931) The diamond-bearing region of northern Minas Geraes, Brazil. Econ Geol 26:502–530CrossRefGoogle Scholar
  55. Morteani G, Ackermand D, Horn AH (2001) Aluminium-phosphates and borosilicates in muscovite–kyanite metaquartzites near Diamantina (Minas Gerais, Brazil): petrogenetic implications. Per Mineral 70:111–129Google Scholar
  56. Mourão MAA, Dardenne MA (1996) A unidade fosfática do Supergrupo Espinhaço em Minas Gerais: um exemplo de implantação de sistema fosfogenético no Mesoproterozóico. XXXIX Congresso Brasileiro de Geolologia, Salvador, Sociedade Brasileira de Geologia, Anais 3:310–312Google Scholar
  57. Okamoto H, Massalski TB (1985) The Au–Pt (gold–platinum) system. Bull Alloy Phase Diagr 6:46–56CrossRefGoogle Scholar
  58. Pal DC, Trumbull RB, Wiedenbeck M (2010) Chemical and boron isotope compositions of tourmaline from the Jaduguda U (−Cu–Fe) deposit, Singhbhum shear zone, India: implications for the sources and evolution of mineralizing fluids. Chem Geol 277:245–260CrossRefGoogle Scholar
  59. Palmer MR, Slack JF (1989) Boron isotopic composition of tourmaline from massive sulfide deposits and tourmalinites. Contrib Mineral Petrol 103:434–451CrossRefGoogle Scholar
  60. Petkov V, Wanjala BN, Loukrakpam R, Luo J, Yang L, Zhong C-J, Shastri S (2012) Pt−Au alloying at the nanoscale. Nano Lett 12:4289–4299CrossRefGoogle Scholar
  61. Pflug R (1967) Die präkambrische Miogeosynklinale der Espinhaço-Kordillere, Minas Gerais, Brasilien. Geol Rundsch 56:825–844CrossRefGoogle Scholar
  62. Pires FRM (1995) Textural and mineralogical variations during metamorphism of the Proterozoic Itabira iron formation in the Quadrilátero Ferrífero, Minas Gerais, Brazil. An Acad Bras Ci 67:77–105Google Scholar
  63. Rapp JF, Klemme S, Butler IB, Harley SL (2010) Extremely high solubility of rutile in chloride and fluoride-bearing metamorphic fluids: an experimental investigation. Geology 38:323–326CrossRefGoogle Scholar
  64. Reeves RG (1966) Geology and mineral resources of the Monlevade and Rio Piracicaba quadrangles, Minas Gerais, Brazil. US Geol Surv Prof Paper 341-EGoogle Scholar
  65. Rolim VK, Rosière CA, Santos JOS, McNaughton NJ (2016) The Orosirian–Statherian banded iron formation-bearing sequences of the southern border of the Espinhaço Range, Southeast Brazil. J S Am Earth Sci 65:43–66CrossRefGoogle Scholar
  66. Rosset A, De Min A, Marques LS, Macambira MJB, Ernesto M, Renne PR, Piccirillo EM (2007) Genesis and geodynamic significance of Mesoproterozoic and Early Cretaceous tholeiitic dyke swarms from the São Francisco craton (Brazil). J S Am Earth Sci 24:69–92CrossRefGoogle Scholar
  67. Schöll WU, Turinsky F (1980) O espectro de minerais pesados nas sequências quartzíticas Pré-Cambrianas na parte sul da Serra do Espinhaço, Minas Gerais, Brasil. Münster Fortsch Geol Paläont 51:257–278Google Scholar
  68. Simon G, Kesler SE, Essene EJ (1997) Phase relations among selenides, sulfides, tellurides, and oxides: II. Applications to selenide-bearing ore deposits. Econ Geol 92:468–484CrossRefGoogle Scholar
  69. Simplicio F, Basilici G (2015) Unusual thick eolian sand sheet sedimentary succession: Paleoproterozoic Bandeirinha Formation, Minas Gerais. Braz J Geol 45(Suppl 1):3–11CrossRefGoogle Scholar
  70. Slack JF, Herriman N, Barnes RG, Plimer IR (1984) Stratiform tourmalinites in metamorphic terranes and their geologic significance. Geology 12:713–716CrossRefGoogle Scholar
  71. Slack JF, Palmer MR, Stevens BPJ, Barnes RG (1993) Origin and significance of tourmaline-rich rocks in the Broken Hill district, Australia. Econ Geol 88:505–541CrossRefGoogle Scholar
  72. Trumbull RB, Krienitz M-S, Grundmann G, Wiedenbeck M (2009) Tourmaline geochemistry and δ11B variations as a guide to fluid–rock interaction in the Habachtal emerald deposit, Tauern window, Austria. Contrib Mineral Petrol 157:411–427CrossRefGoogle Scholar
  73. Trumbull RB, Slack JF, Krienitz M-S, Belkin HE, Wiedenbeck M (2011) Fluid sources and metallogenesis in the blackbird Co–Cu–Au–Bi–Y–REE district, Idaho, U.S.A.: insights from major-element and boron isotopic compositions of tourmaline. Can Mineral 49:225–244CrossRefGoogle Scholar
  74. Trumbull RB, Beurlen H, Wiedenbeck M, Soares DR (2013) The diversity of B-isotope variations in tourmaline from rare-element pegmatites in the Borborema Province of Brazil. Chem Geol 352:47–62CrossRefGoogle Scholar
  75. van Hinsberg VJ, Henry DJ, Marschall HR (2011) Tourmaline: an ideal indication of its host environment. Can Mineral 49:1–16CrossRefGoogle Scholar
  76. Vial DS, Duarte BP, Fuzikawa K, Vieira MBH (2007) An epigenetic origin for the Passagem de Mariana gold deposit, Quadrilátero Ferrífero, Minas Gerais, Brazil. Ore Geol Rev 32:596–613CrossRefGoogle Scholar
  77. von Eschwege WL (1832) Beiträge zur Gebirgskunde Brasiliens. G. Reimer, BerlinGoogle Scholar
  78. von Humboldt A (1826) Ueber die Lagerung des Platins. Ann Phys 83:515–520CrossRefGoogle Scholar
  79. Vymazalová A, Laufek F, Drábek M, Cabral AR, Haloda J, Sidorinová T, Lehmann B, Galbiatti HF, Drahokoupil J (2012) Jacutingaite, Pt2HgSe3, a new platinum-group mineral from the Cauê iron-ore deposit, Itabira district, Minas Gerais, Brazil. Can Mineral 50:431–440CrossRefGoogle Scholar
  80. Wollaston WH (1809) On platina and native palladium from Brasil. Phil Trans Roy Soc London 99:189–194CrossRefGoogle Scholar
  81. Wood SA, Normand C (2008) Mobility of palladium chloride complexes in mafic rocks: insights from a flow-through experiment at 25 °C using air-saturated, acidic, and Cl-rich solutions. Miner Petrol 92:81–97CrossRefGoogle Scholar
  82. Wunder B, Meixner A, Romer RL, Wirth R, Heinrich W (2005) The geochemical cycle of boron: constraints from boron isotope partitioning experiments between mica and fluid. Lithos 84:206–216CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2017

Authors and Affiliations

  • Alexandre Raphael Cabral
    • 1
    • 2
  • Miguel Tupinambá
    • 3
  • Armin Zeh
    • 2
  • Bernd Lehmann
    • 1
  • Michael Wiedenbeck
    • 4
  • Michael Brauns
    • 5
  • Rogerio Kwitko-Ribeiro
    • 6
  1. 1.Lagerstätten und RohstoffeTechnische Universität ClausthalClausthal-ZellerfeldGermany
  2. 2.Institut für Angewandte Geowissenschaften - Mineralogie und PetrologieKIT - Karlsruher Institut für Technologie, Campus SüdKarlsruheGermany
  3. 3.Tektos-Geotectonic Research Group, Faculdade de GeologiaUniversidade do Estado do Rio de JaneiroRio Janeiro-RJBrazil
  4. 4.Deutsches GeoForschungsZentrum GFZPotsdamGermany
  5. 5.Curt-Engelhorn-Zentrum ArchäometrieAn-Institut der Universität TübingenMannheimGermany
  6. 6.Vale S.A., Departamento de Tecnologia MineralSanta Luzia-MGBrazil

Personalised recommendations