Mineralogy and Petrology

, Volume 111, Issue 3, pp 373–381 | Cite as

Jörgkellerite, Na3Mn3+3(PO4)2(CO3)O2·5H2O, a new layered phosphate-carbonate mineral from the Oldoinyo Lengai volcano, Gregory rift, northern Tanzania

  • Anatoly N. Zaitsev
  • Sergey N. Britvin
  • Anton Kearsley
  • Thomas Wenzel
  • Caroline Kirk
Original Paper

Abstract

Jörgkellerite, ideally Na3Mn3+3(PO4)2(CO3)O2·5H2O, is a new layered phosphate-carbonate from the Oldoinyo Lengai volcano in the Gregory Rift (northern Tanzania). The mineral occurs as spherulites, up to 200 μm in diameter, consisting of plates up to 10 μm in thickness in shortite-calcite and calcite carbonatites. Jörgkellerite is brown with a vitreous lustre and has a perfect micaceous cleavage on {001}, Mohs hardness is 3. The calculated density is 2.56 g/cm3. Jörgkellerite is uniaxial (-), ω = 1.700(2), ε = 1.625(2) (Na light, 589 nm) with distinct pleochroism: O = dark brown, E = light brown. The empirical formula of the mineral (average of 10 electron microprobe analyses) is (Na2.46K0.28Ca0.08Sr0.04Ba0.02)Σ2.88(Mn3+2.39Fe3+0.56)Σ2.95((PO4)1.95(SiO4)0.05))Σ2.00(CO3)(O1.84(OH)0.16)Σ2.00·5H2O. The oxidation state of Mn has been determined by XANES. Jörgkellerite is trigonal, space group P-3, a = 11.201(2) Å, c = 10.969(2) Å, V = 1191.9(7) Å3 and Z = 3. The five strongest powder-diffraction lines [d in Å, (I/Io), (hkl)] are: 10.970 (100) (001), 5.597 (15) (002), 4.993 (8) (111), 2.796 (14) (220) and 2.724 (20) (004). The crystal structure is built up of the layers composed of disordered edge-sharing [MnO6] octahedra. Each fourth Mn site in octahedral layer is vacant that results in appearance of ordered system of hexagonal “holes” occupied by (CO3) groups. The overall composition of the layer can be expressed as [Mn3O8(CO3)]. These manganese-carbonate layers are linked in the third dimension by (PO4) tetrahedra and Na-polyhedra. The origin of jörgkellerite is related to low-temperature oxidative alteration of gregoryite-nyerereite carbonatites.

Keywords

Jörgkellerite Phosphate-carbonate mineral Carbonatite Oldoinyo Lengai 

Supplementary material

710_2016_487_Fig7_ESM.gif (24 kb)
Online Resource 1

(GIF 24 kb)

710_2016_487_MOESM1_ESM.tif (1 mb)
High resolution image (TIF 1036 kb)
710_2016_487_MOESM2_ESM.txt (19 kb)
Online Resource 2(TXT 19 kb)

References

  1. Armbruster T, Oberhänsli R, Kunz M (1993) Taikanite, BaSr2Mn2 3+O2[Si4O12], from the Wessels mine, South Africa: a chain silicate related to synthetic Ca3Mn2 3+O2[Si4O12]. Am Mineral 78:1088–1095Google Scholar
  2. Bell K, Dawson JB (1995) Nd and Sr isotope systematics of the active carbonatite volcano, Oldoinyo Lengai. In: Bell K, Keller J (eds) Carbonatite volcanism: Oldoinyo Lengai and the petrogenesis of natrocarbonatites. Springer, Berlin, pp 100–112CrossRefGoogle Scholar
  3. Bell K, Keller J (eds) (1995) Carbonatite volcanism: Oldoinyo Lengai and the petrogenesis of natrocarbonatites. Springer, BerlinGoogle Scholar
  4. Bell K, Simonetti A (1996) Carbonatite magmatism and plume activity: implications from the Nd, Pb and Sr isotope systematics of Oldoinyo Lengai. J Petrol 37:1321–1339CrossRefGoogle Scholar
  5. Britvin SN, Pakhomovskii YA, Bogdanova AN, Sokolova EV (1990) Girvasite, a new carbonate-phosphate of sodium, calcium and magnesium. Mineral Zh 12:79–83 (in Russian)Google Scholar
  6. Britvin SN, Pakhomovskii YA, Bogdanova AN, Skiba VI (1991) Strontiowhitlockite, Sr9Mg(PO3OH)(PO4)6, a new mineral species from the Kovdor deposit, Kola Peninsula, U.S.S.R. Can Mineral 29:87–93Google Scholar
  7. Britvin SN, Ferraris G, Ivaldi G, Bogdanova AV, Chukanov NV (2002) Cattiite, Mg3(PO4)2 · 22H2O, a new mineral from Zhelezny Mine (Kovdor Massif, Kola Peninsula, Russia). Neues Jb Mineral Monat 2002:160–168CrossRefGoogle Scholar
  8. Chen H, Hao Q, Zivkovic O, Hautier G, Du L-S, Tang Y, Hu Y-Y, Ma X, Grey CP, Ceder G (2013) Sidorenkite (Na3MnPO4CO3): a new intercalation cathode material for Na-ion batteries. Chem Mater 25:2777–2786CrossRefGoogle Scholar
  9. Church AA, Jones AP (1994) Hollow natrocarbonatite lapilli from the 1992 eruption of Oldoinyo Lengai, Tanzania. J Geol Soc Lond 151:59–63CrossRefGoogle Scholar
  10. Dawson JB (1962) The geology of Oldoinyo Lengai. Bull Volcanol 24:348–387CrossRefGoogle Scholar
  11. Dawson JB (1993) A supposed sövite from Oldoinyo Lengai, Tanzania: result of extreme alteration of alkali carbonatite lava. Mineral Mag 57:93–101CrossRefGoogle Scholar
  12. Dawson JB, Garson MS, Roberts D (1987) Altered former alkalic carbonatite lava from Oldoinyo Lengai, Tanzania: inferences for calcite carbonatite lavas. Geology 15:765–768CrossRefGoogle Scholar
  13. Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H (2009) Olex2: a complete structure solution, refinement and analysis program. J Appl Crystallogr 42:339–341CrossRefGoogle Scholar
  14. Donaldson CH, Dawson JB, Kanaris-Sotiriou R, Batchelor RA, Walsh JN (1987) The silicate lavas of Oldoinyo Lengai, Tanzania. Neues Jb Mineral Abh 156:247–279Google Scholar
  15. Frost RL, Dickfos MJ (2008) Raman and infrared spectroscopic study of the anhydrous carbonate minerals shortite and barytocalcite. Spectrochim Acta A 71:143–146CrossRefGoogle Scholar
  16. Frost RL, Martens W, Williams PA, Kloprogge JT (2002) Raman and infrared spectroscopic study of the vivianite-group phosphates vivianite, baricite and bobierrite. Mineral Mag 66:1063–1073CrossRefGoogle Scholar
  17. Frost RL, López A, Scholz R, Belotti FM, Xi Y (2015) A vibrational spectroscopic study of the anhydrous phosphate mineral sidorenkite Na3Mn(PO4)(CO3). Spectrochim Acta A 137:930–934CrossRefGoogle Scholar
  18. Garrels RM, Christ C (1965) Solutions, minerals, and equilibria. Harper and Row, New YorkGoogle Scholar
  19. Hassanzadeh N, Sadrnezhaad SK, Chen G (2014) In-situ hydrothermal synthesis of Na3MnCO3PO4/rGO hybrid as a cathode for Na-ion battery. Electrochim Acta 208:188–194CrossRefGoogle Scholar
  20. Hawthorne FC, Oberti R, Cannillo E, Sardone N, Zanetti A, Grice JD, Ashley P (1995) A new anhydrous amphibole from the Hoskins mine, Grenfell, New South Wales, Australia: description and crystal structure of ungarettite, NaNa2(Mn2 2+Mn3 3+)Si8O22O2. Am Mineral 80:165–172CrossRefGoogle Scholar
  21. Jagniecki EA, Jenkins DM, Lowenstein TK, Carroll AR (2013) Experimental study of shortite (Na2Ca2(CO3)3) formation and application to the burial history of the Wilkins Peak Member, Green River Basin, Wyoming, USA. Geochim Cosmochim Acta 115:31–45CrossRefGoogle Scholar
  22. Keller J, Hoefs J (1995) Stable isotope characteristics of recent natrocarbonatites from Oldoinyo Lengai. In: Bell K, Keller J (eds) Carbonatite volcanism: Oldoinyo Lengai and the petrogenesis of natrocarbonatites. Springer, Berlin, pp 113–123CrossRefGoogle Scholar
  23. Keller J, Krafft M (1990) Effusive natrocarbonatite activity of Oldoinyo Lengai, June 1988. Bull Volcanol 52:629–645CrossRefGoogle Scholar
  24. Keller J, Zaitsev AN (2006) Calciocarbonatitic dykes at Oldoinyo Lengai, Tanzania: the fate of natrocarbonatite. Can Mineral 44:857–876CrossRefGoogle Scholar
  25. Keller J, Zaitsev AN (2012) Geochemistry and petrogenetic significance of natrocarbonatites at Oldoinyo Lengai, Tanzania: composition of lavas from 1988 to 2007. Lithos 148:45–53CrossRefGoogle Scholar
  26. Keller J, Zaitsev AN, Wiedenmann D (2006) Primary magmas at Oldoinyo Lengai: the role of olivine melilitites. Lithos 91:150–172CrossRefGoogle Scholar
  27. Keller J, Klaudius J, Kervyn M, Ernst G, Mattsson HB (2010) Fundamental changes in the activity of the natrocarbonatite volcano Oldoinyo Lengai, Tanzania: I. New magma composition during the 2007–2008 explosive eruptions. Bull Volcanol 72:893–912CrossRefGoogle Scholar
  28. Khomyakov AP, Semenov EI, Kazakova ME, Shumyatskaya NG (1980) Sidorenkite, Na3Mn(PO4)(CO3), a new mineral. Int Geol Rev 22:811–814CrossRefGoogle Scholar
  29. Kim H, Yoon G, Park I, Hong J, Park K-Y, Kim J, Lee K-S, Sung N-E, Lee S, Kang K (2016) Highly stable iron- and manganese-based cathodes for long-lasting sodium rechargeable batteries. Chem Mater 28:7241–7249CrossRefGoogle Scholar
  30. Klaudius J, Keller J (2006) Peralkaline silicate lavas at Oldoinyo Lengai, Tanzania. Lithos 91:173–190CrossRefGoogle Scholar
  31. Krivovichev SV, Britvin SN, Burns PC, Yakovenchuk VN (2002) Crystal structure of rimkorolgite, Ba[Mg5(H2O)7(PO4)4](H2O), and its comparison with bakhchisaraitsevite. Eur J Mineral 14:397–402CrossRefGoogle Scholar
  32. Krivovichev SV, Chernyatieva AP, Britvin SN, Yakovenchuk VN, Krivovichev VG (2013) Refinement of the crystal structure of bonshtedtite, Na3Fe(PO4)(CO3). Geol Ore Deposit 55:669–675CrossRefGoogle Scholar
  33. Krivovichev SV, Chernyatieva AP, Britvin SN, Yakovenchuk VN (2015) The crystal structure of girvasite, NaCa2Mg3(PO4)3(CO3)(H2O)6, a complex phosphate-carbonate hydrate based upon electroneutral heteropolyhedral layers. Russ Geol Geophys 56:155–163CrossRefGoogle Scholar
  34. Kurova TA, Shumyatskaya NG, Voronkov AA, Pyatenko YA (1980) The specification of sidorenkite Na3Mn(PO4)(CO3) crystal structure. Mineral Zh 2(6):65–70 (in Russian)Google Scholar
  35. Manceau A, Gorshkov AI, Drits VA (1992) Structural chemistry of Mn, Fe, Co and Ni in manganese hydrous oxides: part I. Information from XANES spectroscopy. Am Mineral 77:1133–1143Google Scholar
  36. Mitchell RH (2006a) An ephemeral pentasodium phosphate carbonate from natrocarbonatite lapilli, Oldoinyo Lengai, Tanzania. Mineral Mag 70:211–218CrossRefGoogle Scholar
  37. Mitchell RH (2006b) Mineralogy of stalactites formed by subaerial weathering of natrocarbonatite hornitos at Oldoinyo Lengai, Tanzania. Mineral Mag 70:437–444CrossRefGoogle Scholar
  38. Mitchell RH (2009) Peralkaline nephelinite-natrocarbonatite immiscibility and carbonatite assimilation at Oldoinyo Lengai, Tanzania. Contrib Mineral Petrol 158:589–598CrossRefGoogle Scholar
  39. Mitchell RH, Belton F (2004) Niocalite–cuspidine solid solution and manganoan monticellite from natrocarbonatite, Oldoinyo Lengai, Tanzania. Mineral Mag 68:787–799CrossRefGoogle Scholar
  40. Mitchell RH, Kamenetsky VS (2012) Trace element geochemistry of nyerereite and gregoryite phenocrysts from natrocarbonatite lava, Oldoinyo Lengai, Tanzania: implications for magma mixing. Lithos 152:56–65CrossRefGoogle Scholar
  41. Moore PB (1967) Crystal chemistry of the basic manganese arsenate minerals 1. The crystal structures of flinkite, Mn2 2+Mn3+(OH)4(AsO4) and retzian, Mn2 2+Y3+(OH)4(AsO4). Am Mineral 52:1603–1613Google Scholar
  42. Perova EN, Zaitsev AN (2016) Thermodynamic analysis of stability of secondary minerals in altered carbonatites of the Oldoinyo Lengai volcano, northern Tanzania. P Russ Mineral Soc 145(3):1–13 (in Russian)Google Scholar
  43. Peterson TD (1989) Peralkaline nephelinites II. Low pressure fractionation and the hypersodic lavas of Oldoinyo Lengai. Contrib Mineral Petrol 102:336–346CrossRefGoogle Scholar
  44. Peterson TD (1990) Petrology and genesis of natrocarbonatite. Contrib Mineral Petrol 105:143–155CrossRefGoogle Scholar
  45. Sekisova VS, Sharygin VV, Zaitsev AN, Strekopytov S (2015) Liquid immiscibility during crystallization of forsterite–phlogopite ijolites at Oldoinyo Lengai Volcano, Tanzania: study of melt inclusions. Russ Geol Geophys 56:1717–1737CrossRefGoogle Scholar
  46. Sharygin VV, Kamenetsky VS, Zaitsev AN, Kamenetsky MB (2012) Silicate-natrocarbonatite carbonate liquid immiscibility in 1917 eruption combeite-wollastonite nephelinite, Oldoinyo Lengai volcano, Tanzania: melt inclusion study. Lithos 152:23–39CrossRefGoogle Scholar
  47. Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr A 64:112–122CrossRefGoogle Scholar
  48. Soldati AL, Goettlicher J, Jacob DE, Vicente Vilas V (2010) Manganese speciation in Diplodon chilensis patagonicus shells: a XANES study. J Synchrotron Radiat 17:193–201CrossRefGoogle Scholar
  49. Tregenna-Piggott PLW (2008) Origin of compressed Jahn-Teller octahedra in sterically strained manganese(III) complexes. Inorg Chem 47:448–453CrossRefGoogle Scholar
  50. Yabuuchi N, Kubota K, Dahbi M, Komaba S (2014) Research development on sodium-ion batteries. Chem Rev 114:11636–11682CrossRefGoogle Scholar
  51. Zaitsev AN, Keller J (2006) Mineralogical and chemical transformation of Oldoinyo Lengai natrocarbonatites, Tanzania. Lithos 91:191–207CrossRefGoogle Scholar
  52. Zaitsev AN, Keller J, Spratt J, Perova EN, Kearsley A (2008) Nyererite-pirssonite-calcite-shortite relationships in altered natrocarbonatites, Oldoinyo Lengai, Tanzania. Can Mineral 46:843–860CrossRefGoogle Scholar
  53. Zaitsev AN, Keller J, Billström K (2009a) Isotopic composition of Sr, Nd and Pb in pirssonite, shortite and calcite carbonatites from Oldoinyo Lengai volcano, Tanzania. Dokl Earth Sci 425(2):302–306CrossRefGoogle Scholar
  54. Zaitsev AN, Keller J, Spratt J, Jeffries TE, Sharygin VV (2009b) Chemical composition of nyerereite and gregoryite from natrocarbonatites of Oldoinyo Lengai volcano, Tanzania. Geol Ore Deposit 51(7):608–616Google Scholar
  55. Zaitsev AN, Wenzel T, Vennemann T, Markl G (2013) Tinderet volcano, Kenya: an altered natrocarbonatite locality? Mineral Mag 77:213–226CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  • Anatoly N. Zaitsev
    • 1
    • 2
  • Sergey N. Britvin
    • 3
  • Anton Kearsley
    • 2
  • Thomas Wenzel
    • 4
  • Caroline Kirk
    • 2
    • 5
  1. 1.Department of MineralogySt. Petersburg State UniversitySt. PetersburgRussia
  2. 2.Department of Earth SciencesNatural History MuseumLondonUK
  3. 3.Department of CrystallographySt. Petersburg State UniversitySt. PetersburgRussia
  4. 4.Mathematisch-Naturwissenschaftliche Fakultät, FB GeowissenschaftenUniversität TübingenTübingenGermany
  5. 5.Department of ChemistryLoughborough UniversityLoughboroughUK

Personalised recommendations