Advertisement

Mineralogy and Petrology

, Volume 111, Issue 1, pp 1–21 | Cite as

U-Pb geochronology on zircon and columbite-group minerals of the Cap de Creus pegmatites, NE Spain

  • Marieke Van Lichtervelde
  • Alexis Grand’Homme
  • Michel de Saint-Blanquat
  • Philippe Olivier
  • Axel Gerdes
  • Jean-Louis Paquette
  • Joan Carles Melgarejo
  • Elena Druguet
  • Pura Alfonso
Original Paper

Abstract

The Cap de Creus granitic pegmatites in the eastern Catalan Pyrenees were dated using in situ U-Pb geochronology by laser ablation ICP-MS on zircon and columbite-group minerals (CGM), which are present in the different types of pegmatites from type I (K-feldspar pegmatites, least evolved) to type IV (albite pegmatites, most evolved) and therefore allow dating the different pegmatitic pulses. In a type III pegmatite where zircon and CGM are co-genetically associated in the same sample, both minerals were dated using zircon and tantalite reference materials, respectively, to avoid laser-induced matrix-dependent fractionation. In one sample, xenotime genetically associated with zircon was also dated. Two ages were obtained for type I and three ages for type III pegmatites. Three of these 5 ages range from 296.2 ± 2.5 to 301.9 ± 3.8 Ma and are allocated to the primary magmatic stage of crystallization and therefore to the emplacement event. Two younger ages (290.5 ± 2.5 and 292.9 ± 2.9 Ma) obtained on secondary zircon and xenotime, respectively, are interpreted as late post-solidus hydrothermal remobilization. There is no age difference between type I and type III pegmatites. The mean 299 Ma primary magmatic age allows the main late Carboniferous deformation event to be dated and is also synchronous with other peraluminous and calc-alkaline granites in the Pyrenees. However, the youngest ages around 292 Ma imply that tectonics was still active in Early Permian times in the Cap de Creus area.

Keywords

Geochronology Pegmatites Cap de Creus Zircon Columbite-group minerals 

Notes

Acknowledgments

We thank Thierry Aigouy, Sophie Gouy and Philippe de Parseval for SEM imaging and electron probe microanalyses. Constructive comments by reviewers Jérémie Melleton, Simon Goldmann, Ian Buick, Frank Melcher and an anonymous expert are greatly appreciated. Associate Editor Dirk Frei and Editor-in-Chief Lutz Nasdala are thanked for editorial handling of the manuscript. This work was financed by the program CESSUR of CNRS-INSU and the 2014 SGR 1661 of the Generalitat de Catalunya.

References

  1. Aguilar C, Montserrat L, Castiñeiras P, Navidad M (2014) Late Variscan metamorphic and magmatic evolution in the eastern Pyrenees revealed by U–Pb age zircon dating. J Geol Soc Lond 171:181–192CrossRefGoogle Scholar
  2. Alfonso P, Melgarejo JC (2008) Fluid evolution in the zoned rare-element pegmatite field at Cap de Creus, Catalonia, Spain. Can Mineral 46:597–617CrossRefGoogle Scholar
  3. Alfonso P, Corbella M, Melgarejo JC (1995) Nb–Ta minerals from the Cap de Creus pegmatite field, eastern Pyrenees: distribution and geochemical trends. Mineral Petrol 55:53–69CrossRefGoogle Scholar
  4. Alfonso P, Melgarejo JC, Yusta I, Velasco F (2003) Geochemistry of feldspars and muscovite in granitic pegmatite from the Cap de Creus field, Catalonia, Spain. Can Mineral 41:103–116CrossRefGoogle Scholar
  5. Autran A, Fonteilles M, Guitard G (1970) Relations entre les intrusions de granitoïdes, l’anatexie et le métamorphisme régional, considérées principalement du point de vue du rôle de l’eau: cas de la chaîne hercynienne de Pyrénées orientales. Bull Soc Geol Fr 7:673–731CrossRefGoogle Scholar
  6. Baker DR (1998) The escape of pegmatite dykes from granitic plutons: constraints from new models of viscosity and dike propagation. Can Mineral 36:255–263Google Scholar
  7. Bons PD, Druguet E, Hamann I, Carreras J, Passchier CW (2004) Apparent boudinage in dykes. J Struct Geol 26:625–636CrossRefGoogle Scholar
  8. Carreras J (1975) Las deformaciones tardi-hercinicas en el litoral septentrional de la peninsula del Cap de Creus (prov. Gerona, España): la génesis de las bandas miloniticas. Acta Geol Hisp 10:109–115Google Scholar
  9. Carreras J (2001) Zooming on Northern Cap de Creus shear zones. J Struct Geol 23:1457–1486CrossRefGoogle Scholar
  10. Carreras J, Druguet E (1994) Structural zonation as a result of inhomogeneous non-coaxial deformation and its control on syntectonic intrusions: an example from the Cap de Creus area, Eastern Pyrenees. J Struct Geol 16:1525–1534CrossRefGoogle Scholar
  11. Carreras J, Druguet E (2013) Illustrated field guide to the geology of the Cap de Creus. Servei de Publicacions de la Universitat Autònoma de Barcelona, 123 ppGoogle Scholar
  12. Carreras J, Druguet E, Griera A, Soldevila J (2004) Strain and deformation history in a syntectonic pluton; the case of the Roses granodiorite (Cap de Creus, Eastern Pyrenees). J Geol Soc Lond Special Publications 224:307–319CrossRefGoogle Scholar
  13. Casas JM, Castiñeiras P, Navidad M, Liesa M, Carreras J (2010) New insights into Late Ordovician magmatism in the Eastern Pyrenees: U-Pb SHRIMP zircon data from the Canigó massif. Gondwana Res 17:317–324CrossRefGoogle Scholar
  14. Casas JM, Navidad M, Castiñeiras P, Liesa M, Aguilar C, Carreras J, Hofmann M, Gärtner A, Linnemann U (2015) The Late Neoproterozoic magmatism in the Ediacaran series of the Eastern Pyrenees: new ages and isotope geochemistry. Int J Earth Sci 104:909–925CrossRefGoogle Scholar
  15. Castiñeiras P, Navidad M, Liesa M, Carreras J, Casas JM (2008) U–Pb zircon ages (SHRIMP) for Cadomian and Early Ordovician magmatism in the Eastern Pyrenees: New insights into the pre-Variscan evolution of the northern Gondwana margin. Tectonophysics 461:228–239CrossRefGoogle Scholar
  16. Černỳ P, Ercit TS (2005) The classification of granitic pegmatites revisited. Can Mineral 43:2005–2026CrossRefGoogle Scholar
  17. Che XD, Wu FY, Wang RC, Gerdes A, Ji WQ, Zhao ZH, Yang JH, Zhu ZY (2015a) In situ U–Pb isotopic dating of columbite–tantalite by LA–ICP–MS. Ore Geol Rev 65:979–989CrossRefGoogle Scholar
  18. Che XD, Wu FY, Wang RC, Gerdes A, Ji WQ, Zhao ZH, Yang JH, Zhu ZY (2015b) Corrigendum to “In situ U–Pb isotopic dating of columbite–tantalite by LA-ICP-MS” [Ore Geol Rev 65 (2015) 979–989]. Ore Geol Rev 67:400CrossRefGoogle Scholar
  19. Cocherie A, Baudin T, Autran A, Guerrot C, Fanning CM, Laumonier B (2005) U-Pb zircon (ID-TIMS and SHRIMP) evidence for early ordovician intrusion of metagranites in the late Proterozoic Canaveilles Group of the Pyrenees and the Montagne Noire (France). Bull Soc Geol Fr 176:269–282CrossRefGoogle Scholar
  20. Corbella M, Melgarejo JC (1993) Rare-element pegmatites of Cap de Creus Peninsula, northeast Spain: a new field of the beryl–phosphate subtype. Proc. 8th IAGOD Symp. E. Schweizerbart’sche Verlagsbuchhandlung (Nägele u. Obermiller), Stuttgart, Germany 295–302Google Scholar
  21. Damm KW, Harmon RS, Heppner PM, Dornsiepen U (1992) Stable isotope constraints on the origin of the Cabo de Creus garnet-tourmaline pegmatites, Massif des Alberes, Eastern Pyrenees, Spain. Geol J 27:75–86CrossRefGoogle Scholar
  22. Demartis M, Pinotti LP, Coniglio JE, D’Eramo FJ, Tubia JM, Aragon E, Agulleiro Insua LA (2011) Ascent and emplacement of pegmatitic melts in a major reverse shear zone (Sierras de Cordoba, Argentina). J Struct Geol 33:1334–1346CrossRefGoogle Scholar
  23. Denèle Y, Laumonier B, Paquette J-L, Olivier P, Gleizes G, Barbey P (2014) Timing of granite emplacement, crustal flow and gneiss dome formation in the Variscan segment of the Pyrenees. J Geol Soc Lond Special Publications 405:265–287CrossRefGoogle Scholar
  24. Deng XD, Li JW, Zhao XF, Hu ZC, Hu H, Selby D, de Souza Z (2013) U–Pb isotope and trace element analysis of columbite-(Mn) and zircon by laser ablation ICP–MS: implications for geochronology of pegmatite and associated ore deposits. Chem Geol 344:1–11CrossRefGoogle Scholar
  25. Deveaud S, Gumiaux C, Gloaguen E, Branquet Y (2013) Spatial statistical analysis applied to rare-element LCT-type pegmatite fields: an original approach to constrain faults–pegmatites–granites relationships. J Geosci 58:163–182CrossRefGoogle Scholar
  26. Dewaele S, Henjes-Kunst F, Melcher F, Sitnikova M, Burgess R, Gerdes A, Fernández-Alonso M, De Clerq F, Muchez P, Lehmann B (2011) Late Neoproterozoic overprinting of the cassiterite and columbite –tantalite bearing pegmatites of the Gatumba area, Rwanda (Central Africa). J Afr Earth Sci 61:10–26CrossRefGoogle Scholar
  27. Druguet E (2001) Development of high thermal gradients by coeval transpression and magmatism during the Variscan orogeny: insights from the Cap de Creus (Eastern Pyrenees). Tectonophysics 332:275–293CrossRefGoogle Scholar
  28. Druguet E, Carreras J (2006) Analogue modelling of syntectonic leucosomes in migmatitic schists. J Struct Geol 28:1734–1747CrossRefGoogle Scholar
  29. Druguet E, Hutton DHW (1998) Syntectonic anatexis and magmatism in a mid-crustal transpressional shear zone: an example from the Hercynian rocks of the eastern Pyrenees. J Struct Geol 20:905–916CrossRefGoogle Scholar
  30. Druguet E, Passchier CW, Carreras J, Victor P, denBrock S (1997) Analysis of a complex high-strain zone at Cap de Creus, Spain. Tectonophysics 280:31–45CrossRefGoogle Scholar
  31. Druguet E, Castro A, Chichorro M, Pereira F, Fernández C (2014) Zircon geochronology of intrusive rocks from Cap de Creus, Eastern Pyrenees. Geol Mag 151:1095–1114CrossRefGoogle Scholar
  32. Evensen JM, London D (2002) Experimental silicate mineral/melt partition coefficients for beryllium and the crustal Be cycle from migmatite to pegmatite. Geochim Cosmochim Acta 66:2239–2265CrossRefGoogle Scholar
  33. Fusseis F, Handy MR, Schrank C (2006) Networking of shear zones at the brittle-to-viscous transition (Cap de Creus, NE Spain). J Struct Geol 28:1228–1243CrossRefGoogle Scholar
  34. Gäbler H-E, Melcher F, Graupner T, Bahr A, Sitnikova M, Henjes-Kunst F, Oberthür T, Brätz H, Gerdes A (2011) Speeding up the analytical workflow for coltan fingerprinting by an integrated mineral liberation analysis/LA-ICP-MS approach. Geostand Geoanal Res 35:431–448CrossRefGoogle Scholar
  35. Gerdes A, Zeh A (2006) Combined U–Pb and Hf isotope LA-(MC-)ICP-MS analyses of detrital zircons: Comparison with SHRIMP and new constraints for the provenance and age of an Armorican metasediment in Central Germany. Earth Planet Sci Lett 249:47–61CrossRefGoogle Scholar
  36. Gerdes A, Zeh A (2009) Zircon formation versus zircon alteration — New insights from combined U–Pb and Lu–Hf in-situ LA-ICP-MS analyses, and consequences for the interpretation of Archean zircon from the Central Zone of the Limpopo Belt. Chem Geol 261:230–243CrossRefGoogle Scholar
  37. Gonçalves G, Lana C, Scholz R, Buick IS, Gerdes A, Kamo SL, Corfu F, Marinho MM, Chaves A, Valeriano C, Nalini HA Jr (2016) An assessment of monazite from the Itambé pegmatite district for use as U–Pb isotope reference material for microanalysis and implications for the origin of the “Moacyr” monazite. Chem Geol 424:30–50CrossRefGoogle Scholar
  38. Horstwood MSA, Foster GL, Parrish RR, Noble SR, Nowell GM (2003) Common-Pb corrected in situ U–Pb accessory mineral geochronology by LA-MC-ICP-MS. J Anal At Spectrom 18:837–846CrossRefGoogle Scholar
  39. Hulsbosch N, Hertogen J, Dewaele S, André L, Muchez P (2014) Alkali metal and rare earth element evolution of rock-forming minerals from the Gatumba area pegmatites (Rwanda): Quantitative assessment of crystal-melt fractionation in the regional zonation of pegmatite groups. Geochim Cosmochim Acta 132:349–374CrossRefGoogle Scholar
  40. Laumonier B, Autran A, Barbey P, Cheilletz A, Baudin T, Cocherie A, Guerrot C (2004) On the non-existence of a Cadomian basement in southern France (Pyrenees, Montagne Noire): implications for the significance of the pre-Variscan (pre-Upper Ordovician) series. Bull Soc Geol Fr 175:643–655CrossRefGoogle Scholar
  41. Laumonier B, Calvet M, Autran A, Rossi P, Guennoc P (2015) Notice explicative, Carte géologique de France (1/50 000), feuille Argelès-sur-Mer-Cerbère (1097). BRGM, OrléansGoogle Scholar
  42. Liesa M, Carreras J, Castiñeiras P, Casas JM, Navidad M, Vilà M (2011) U-Pb zircon age of Ordovician magmatism in the Albera Massif (Eastern Pyrenees). Geol Acta 9:93–101Google Scholar
  43. Linnen RL (1998) The solubility of Nb-Ta-Zr-Hf-W in granitic melts with Li and Li + F: constraints for mineralization in rare metal granites and pegmatites. Econ Geol 93:1013–1025CrossRefGoogle Scholar
  44. Linnen RL, Van Lichtervelde M, Černỳ P (2012) Granitic pegmatites as sources of strategic metals. Elements 8:275–280CrossRefGoogle Scholar
  45. London D (2008) Pegmatites. Can Mineral Special Publication 10, 368 pGoogle Scholar
  46. London D, Evensen JM (2002) Beryllium in silicic magmas and the origin of beryl-bearing pegmatites. In: Grew ES (ed) Beryllium: mineralogy, petrology, and geochemistry, Rev Mineral Geochem, vol 50. Mineral Soc Am, Chantilly, pp. 445–486Google Scholar
  47. Ludwig KR (2008) Isoplot 3.6. Berkeley Geochronology Center Special Publication 4, 77 pGoogle Scholar
  48. Malló A, Fontan F, Melgarejo JC, Mata JM (1995) The Albera zoned pegmatite field, easthern Pyrenées, France. Mineral Petrol 55:103–116CrossRefGoogle Scholar
  49. Melcher F, Sitnikova MA, Graupner T, Martin N, Oberthür T, Henjes-Kunst F, Gäbler E, Gerdes A, Brätz H, Davis DW, Dewaeles S (2008) Fingerprinting of conflict minerals: columbite- tantalite (“coltan”) ores. SGA News 23(1):7–13Google Scholar
  50. Melcher F, Graupner T, Gäbler HE, Sitnikova M, Henjes-Kunst F, Oberthür T, Gerdes A, Dewaele S (2015) Tantalum–(niobium–tin) mineralisation in African pegmatites and rare metal granites: Constraints from Ta–Nb oxide mineralogy, geochemistry and U–Pb geochronology. Ore Geol Rev 64:667–719CrossRefGoogle Scholar
  51. Melleton J, Gloaguen E, Frei D, Novák M, Breiter K (2012) How are the emplacement of rare-element pegmatites, regional metamorphism and magmatism interrelated in the Moldanubian domain of the Variscan Bohemian massif, Czech Republic. Can Mineral 50:1751–1773CrossRefGoogle Scholar
  52. Meyer FM, Kolb J, Sakellaris GA, Gerdes A (2006) New ages from the Mauritanides Belt: recognition of Archean IOCG mineralization at Guelb Moghrein, Mauritania. Terra Nova. 18:345–352CrossRefGoogle Scholar
  53. Millonig LJ, Gerdes A, Groat LA (2013) The effect of amphibolite facies metamorphism on the U-Th-Pb geochronology of accessory minerals from meta-carbonatites and associated meta-alkaline rocks. Chem Geol 353:199–209CrossRefGoogle Scholar
  54. Navidad M, Carreras C (1995) Pre-Hercynian magmatism in the eastern Pyrenees (Cap-de-Creus and Albera massifs) and its geodynamical setting. Geol Mijnb 74:64–74Google Scholar
  55. Paquette JL, Moine B, Rakotondrazafy M (2003) ID-TIMS using the step-wise dissolution technique versus ion microprobe U-Pb dating of metamict Archean zircons from NE Madagascar. Precambrian Res 121:73–84CrossRefGoogle Scholar
  56. Paquette JL, Piro JL, Devidal JL, Bosse V, Didier A (2014) Sensitivity enhancement in LA-ICP-MS by N2 addition to carrier gas: application to radiometric dating of U-Th-bearing minerals. Agilent ICP-MS J 58:4–5Google Scholar
  57. Romer RL, Wright JE (1992) U-Pb dating of columbites: a geologic tool to date magmatism and ore deposits. Geochim Cosmochim Acta 56:2137–2142CrossRefGoogle Scholar
  58. Slama J, Košler J, Condon DJ, Crowley JL, Gerdes A, Hanchar JM, Horstwood MSA, Morris GA, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett MN, Whitehouse MJ (2008) Plešovice zircon: a new natural standard for U–Pb and Hf isotope microanalysis. Chem Geol 249:1–35CrossRefGoogle Scholar
  59. Smith SR, Foster GL, Romer RL, Tindle AG, Kelley SP, Noble SR, Horstwood M, Breaks FW (2004) U–Pb columbite– tantalite chronology of rare-element pegmatites using TIMS and Laser Ablation-Multi collector-ICP-MS. Contrib Mineral Petrol 147:549–564CrossRefGoogle Scholar
  60. Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sc Lett 26:207–221Google Scholar
  61. Tera F, Wasserburg GJ (1974) U-Th-Pb systematics on lunar rocks and inferences about lunar evolution and the age of the moon. Proc. 5th Lunar Conf., Geochim Cosmochim Acta Suppl 5:1571–1599Google Scholar
  62. Wiedenbeck M, Hanchar JM, Peck WH, Sylvester P, Valley J, Whitehouse M, Kronz A, Morishita Y, Nasdala L, Fiebig J, Franchi I, Girard JP, Greenwood RC, Hinton R, Kita N, Mason PRD, Norman M, Ogasawara M, Piccoli PM, Rhede D, Satoh H, Schulz-Dobrick B, Skår Ø, Spicuzza MJ, Terada K, Tindle A, Togashi S, Vennemann T, Xie Q, Zheng YF (2005) Further characterisation of the 91500 zircon crystal. Geostand Geoanal Res 28:9–39CrossRefGoogle Scholar
  63. Zeh A, Gerdes A (2012) U-Pb and Hf isotope record of detrital zircons from gold-bearing sediments of the Pietersburg Greenstone Belt (South Africa) – Is there a common provenance with the Witwatersrand Basin. Precambrian Res 204–205:46–56CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  • Marieke Van Lichtervelde
    • 1
  • Alexis Grand’Homme
    • 2
  • Michel de Saint-Blanquat
    • 1
  • Philippe Olivier
    • 1
  • Axel Gerdes
    • 3
  • Jean-Louis Paquette
    • 4
  • Joan Carles Melgarejo
    • 5
  • Elena Druguet
    • 6
  • Pura Alfonso
    • 7
  1. 1.Géosciences Environnement ToulouseUniversité de Toulouse, CNES, CNRS, IRD, UPSToulouseFrance
  2. 2.ISTerreUniversité GrenobleGrenobleFrance
  3. 3.Department of Geosciences, Petrology and GeochemistryGoethe-University FrankfurtFrankfurt am MainGermany
  4. 4.UMR 6524 Laboratoire Magmas et VolcansClermont Université, Université Blaise Pascal, CNRS, IRDClermont-FerrandFrance
  5. 5.Departament de Cristal·lografia, Mineralogia i Dipòsits MineralsUniversitat de BarcelonaBarcelonaSpain
  6. 6.Departament de GeologiaUniversitat Autònoma de BarcelonaBellaterra (Barcelona)Spain
  7. 7.Departament d’Enginyeria Minera i Recursos NaturalsEscola Politècnica Superior d’Enginyeria de Manresa-UPCManresaSpain

Personalised recommendations