Mineralogy and Petrology

, Volume 110, Issue 6, pp 787–807 | Cite as

Interpretation of U-Th-Pb in-situ ages of hydrothermal monazite-(Ce) and xenotime-(Y): evidence from a large-scale regional study in clefts from the western alps

  • A. Grand’Homme
  • E. Janots
  • V. Bosse
  • A. M. Seydoux-Guillaume
  • R. De Ascenção Guedes
Original Paper

Abstract

In eleven Alpine clefts of the western Alps, in-situ dating of monazite-(Ce) and xenotime-(Y) has been attempted to gain insights on possible disturbances of the geochronological U-Th-Pb systems and age interpretations in hydrothermal conditions. In most clefts, monazite-(Ce) in-situ 208Pb/232Th dating using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) yields well-resolved ages (with errors typically <0.3 Ma, quoted at the 2σ level), indicative of a short duration monazite-(Ce) growth. However, monazite-(Ce) dating demonstrates two successive episodes of growth separated by several million years within two single clefts. Only in one cleft, complex age mixture in a porous and complex zoned monazite-(Ce) suggests disturbance of the 208Pb/232Th ages due to replacement by dissolution-precipitation processes. While some U-Pb ages are coherent with the 208Pb/232Th ages, U-Pb ages are generally disturbed by significant 206Pb excess in monazite-(Ce) with high Th/U ratio (>100). Xenotime-(Y) has remarkably high Th/U ratios and U-Pb dating is also disturbed by 206Pb excess, whereas 208Pb/232Th dating gave well-resolved ages (34.9 ± 0.5 Ma), close to but higher than the monazite-(Ce) age obtained in the same cleft (32.3 ± 0.3 Ma). Correlation of the monazite-(Ce) U-Th-Pb age dataset with other geochronological data suggests for monazite-(Ce) precipitation at periods of high tectonic activity. In the external massifs, monazite-(Ce) dating confirms a polyphased transpressive regime with activity periods around 13–11 Ma and 8–6 Ma. Older monazite-(Ce) ages in the Argentera massif (20.6 ± 0.3 Ma) are consistent with the regional diachronism in the western external Alps. In the 2 clefts of the internal massifs, monazite-(Ce) dating provides first ages of hydrothermal activity: the monazite-(Ce) age at 32.3 ± 0.3 Ma coincides with the exhumation along the Penninic front, but the monazite-(Ce) age at 23.3 ± 0.2 Ma is complex to attribute to a specific deformation stage.

Keywords

Monazite Alps Hydrothermal activity U-Th-Pb dating Xenotime LA-ICPMS Tectonic exhumation 

Notes

Acknowledgments

This work was funded by the ANR-12-JS06-0001-01 (MONA) project and a grant from LabEx OSUG@2020 (Investissements d’avenir – ANR10 LABX56; France). We thank J. Valverde and F. Guichon for providing monazite crystals and their locations, E. Gnos and A.-M. Boullier for fruitful discussions in the field, N. Findling for his assistance with SEM, and finally T. Witcher who corrected the last version of the manuscript. L. Nasdala (editor), B. Schulz and an anonymous reviewer provided careful and constructive comments on the manuscript.

Supplementary material

710_2016_451_MOESM1_ESM.xls (88 kb)
ESM 1 (XLS 88 kb)
710_2016_451_MOESM2_ESM.xls (138 kb)
ESM 2 (XLS 138 kb)
710_2016_451_MOESM3_ESM.pdf (187 kb)
ESM 3 (PDF 187 kb)

References

  1. Agard P, Monié P, Jolivet L, Goffé B (2002) Exhumation of the Schistes Lustrés complex: in situ laser probe 40Ar/39Ar constraints and implications for the western alps. J Metamorph Geol 20:599–618CrossRefGoogle Scholar
  2. Ayers JC, Miller C, Gorisch B, Milleman J (1999) Textural development of monazite during high-grade metamorphism; hydrothermal growth kinetics, with implications for U, Th-Pb geochronology. Am Mineral 84:1766–1780CrossRefGoogle Scholar
  3. Baietto A, Perello P, Cadoppi P, Martinotti G (2009) Alpine tectonic evolution and thermal water circulations of the Argentera massif (south-western alps). Swiss J Geosci 102:223–245. doi: 10.1007/s00015-009-1313-5 CrossRefGoogle Scholar
  4. Bellanger M, Augier R, Bellahsen N, Jolivet L, Monié P, Baudin T, Beyssac O (2015) Shortening of the European Dauphinois margin (Oisans massif, western alps): new insights from RSCM maximum temperature estimates and 40Ar/39Ar in situ dating. J Geodyn 83:37–64CrossRefGoogle Scholar
  5. Berger A, Gnos E, Janots E, Fernandez A, Giese J (2008) Formation and composition of rhabdophane, bastnäsite and hydrated thorium minerals during alteration: implications for geochronology and low-temperature processes. Chem Geol 254:238–248CrossRefGoogle Scholar
  6. Berger A, Gnos E, Janots E, Whitehouse M, Soom M, Frei R, Waight TE (2013) Dating brittle tectonic movements with cleft monazite: fluid-rock interaction and formation of REE minerals. Tectonics 32:1176–1189Google Scholar
  7. Bernet M (2009) A field-based estimate of the zircon fission-track closure temperature. Chem Geol 259:181–189. doi: 10.1016/j.chemgeo.2008.10.043 CrossRefGoogle Scholar
  8. Bertrand JM, Ailleres L, Gasquet D, Macaudiere J (1996) The Pennine front zone in Savoie (western alps), a review and new interpretations from the zone Houillere Brianconnaise. Eclogae Geol Helv 89:297–320Google Scholar
  9. Beucher R (2009) Évolution Néogène de l’Arc Alpin sud-occidental. Approches sismotectonique et thermochronologique. PhD thesis, Université Joseph Fourier, Grenoble, FranceGoogle Scholar
  10. Beucher R, van der Beek P, Braun J, Batt GE (2012) Exhumation and relief development in the Pelvoux and Dora-Maira massifs (western alps) assessed by spectral analysis and inversion of thermochronological age transects. J Geophys Res 117:F03030. doi: 10.1029/2011JF002240 CrossRefGoogle Scholar
  11. Bigot-Cormier F, Sosson M, Poupeau G, Stephan J-F, Labrin E (2006) The denudation history of the Argentera alpine external crystalline massif (western alps, France-Italy): an overview from the analysis of fission tracks in apatites and zircons. Geodin Ac 19:455–473CrossRefGoogle Scholar
  12. Bogdanoff S, Michard A, Mansour M, Poupeau G (2000) Apatite fission track analysis in the Argentera massif: evidence of contrasting denudation rates in the external crystalline massifs of the western alps. Terra Nov. 12:117–125Google Scholar
  13. Bonin B, Brändlein P, Bussy F, Desmons J, Eggenberger U, Finger F, Graf K, Marro C, Mercolli I, Oberhänsli R, Ploquin A, von Quadt A, von Raumer J, Schaltegger U, Steyrer HP, Visona D, Vivier G (1993) Late Variscan magmatic evolution of the alpine basement. In: von Raumer JF, Neubauer F (eds) Pre-Mesozoic geology in the alps. Springer, Berlin Heidelberg, pp. 171–201CrossRefGoogle Scholar
  14. Bosse V, Boulvais P, Gautier P, Tiepolo M, Ruffet G, Devidal JL, Cherneva Z, Gerdjikov I, Paquette JL (2009) Fluid-induced disturbance of the monazite Th-Pb chronometer: in situ dating and element mapping in pegmatites from the Rhodope (Greece, Bulgaria). Chem Geol 261:286–302CrossRefGoogle Scholar
  15. Bucher S, Schmid SM, Bousquet R, Fügenschuh B (2003) Late-stage deformation in a collisional orogen (western alps): nappe refolding, back-thrusting or normal faulting? Terra Nov. 15:109–117Google Scholar
  16. Budzyn B, Harlov DE, Williams ML, Jercinovic MJ (2011) Experimental determination of stability relations between monazite, fluorapatite, allanite, and REE-epidote as a function of pressure, temperature, and fluid composition. Am Mineral 96:1547–1567. doi: 10.2138/am.2011.3741 CrossRefGoogle Scholar
  17. Bussy F, Von Raumer JF (1994) U-Pb geochronology of Palaeozoic magmatic events in the Mont Blanc crystalline massif. Western Alps, Schweiz Miner Petrog 74:514–515Google Scholar
  18. Cabral AR, Zeh A, Galbiatti HF, Lehmann B (2015) Late Cambrian Au-Pd mineralization and Fe enrichment in the Itabira District, Minas Gerais, Brazil, at 496 Ma: constraints from U-Pb monazite dating of a Jacutinga lode. Econ Geol 110:263–272CrossRefGoogle Scholar
  19. Campani M, Mancktelow N, Seward D, Rolland Y, Müller W, Guerra I (2010) Geochronological evidence for continuous exhumation through the ductile-brittle transition along a crustal-scale low-angle normal fault: Simplon fault zone, central alps: exhumation on a low-angle normal fault. Tectonics 29:TC3002. doi: 10.1029/2009TC002582 CrossRefGoogle Scholar
  20. Carpena J (1992) Fission-track dating of zircon: zircons from Mont-Blanc granite (french-italian alps). J Geol 100:411–421CrossRefGoogle Scholar
  21. Cenki-Tok B, Darling JR, Rolland Y, Dhuime B, Storey CD (2014) Direct dating of mid-crustal shear zones with synkinematic allanite: new in situ U-Th-Pb geochronological approaches applied to the Mont Blanc massif. Terra Nov. 26:29–37. doi: 10.1111/ter.12066
  22. Ceriani S, Fügenschuh B, Schmid S (2001) Multi-stage thrusting at the “Penninic front” in the western alps between Mont Blanc and Pelvoux massifs. Int J Earth Sci 90:685–702. doi: 10.1007/s005310000188 CrossRefGoogle Scholar
  23. Challandes N, Marquer D, Villa IM (2008) P-T-t modelling, fluid circulation, and 39Ar-40Ar and Rb-Sr mica ages in the Aar massif shear zones (Swiss alps). Swiss J Geosci 101:269–288. doi: 10.1007/s00015-008-1260-6 CrossRefGoogle Scholar
  24. Cherniak DJ (2006) Pb and rare earth element diffusion in xenotime. Lithos 88:1–14. doi: 10.1016/j.lithos.2005.08.002 CrossRefGoogle Scholar
  25. Cherniak D, Watson EB, Grove M, Harrison TM (2004) Pb diffusion in monazite: a combined RBS/SIMS study. Geochim Cosmochim Ac 68:829–840. doi: 10.1016/j.gca.2003.07.012 CrossRefGoogle Scholar
  26. Corfu F (1988) Differential response of u-pb systems in coexisting accessory minerals, Winnipeg river subprovince, Canadian shield - implications for archean crustal growth and stabilization. Contrib Mineral Petrol 98:312–325. doi: 10.1007/BF00375182 CrossRefGoogle Scholar
  27. Corsini M, Ruffet G, Caby R (2004) Alpine and late-hercynian geochronological constraints in the Argentera massif (western alps). Eclogae Geol Helv 97:3–15. doi: 10.1007/s00015-004-1107-8 CrossRefGoogle Scholar
  28. Crespo-Blanc A, Masson H, Sharp Z, Cosca M, Hunziker J (1995) A stable and 40Ar/39Ar isotope study of a major thrust in the Helvetic nappes (Swiss alps): evidence for fluid flow and constraints on nappe kinematics. Geol Soc Am Bull 107:1129–1144CrossRefGoogle Scholar
  29. Crouzet C, Ménard G, Rochette P (2001) Cooling history of the Dauphinoise zone (western alps, France) deduced from the thermopaleomagnetic record: geodynamic implications. Tectonophysics 340:79–93CrossRefGoogle Scholar
  30. Cruz MJ, Cunha JC, Merlet C (1996) Dataçaõ pontual das monazitas da regiaõ de Itambé, Bahia, através da microssonda electrônica. XXXIX Congresso Brasileiro de Geologia, vol. 2. Sociedade Brasileira de Geologià-Núcleo, Bahià-Segipe, pp. 206–209Google Scholar
  31. Cuney M, Mathieu R (2000) Extreme light rare earth element mobilization by diagenetic fluids in the geological environment of the Oklo natural reactor zones, Franceville basin, Gabon. Geology 28:743–746CrossRefGoogle Scholar
  32. Debelmas J, Caby R, Desmons J, Dabrovski H, Fabre J, Mercier D, Pachoud A (1991) Geological map and explanatory text of the sheet n°728 Sainte-Foy-Tarentaise, scale: 1, 50000. edn BRGMGoogle Scholar
  33. Dempster TJ (1986) Isotope systematics in minerals - biotite rejuvenation and exchange during alpine metamorphism. Earth Planet Sc Lett 78:355–367. doi: 10.1016/0012-821x(86)90003-8 CrossRefGoogle Scholar
  34. Didier A (2013) Comportement géochimique du chronomètre U-Th-Pb dans la monazite : approche par analyses in-situ au LA-ICP-MS. PhD thesis, Université Blaise Pascal, Clermont-Ferrand, FranceGoogle Scholar
  35. Didier A, Bosse V, Boulvais P, Bouloton J, Paquette JL, Montel JM, Devidal JL (2013) Disturbance versus preservation of U–Th–Pb ages in monazite during fluid–rock interaction: textural, chemical and isotopic in situ study in microgranites (Velay dome, France). Contrib Mineral Petrol 165:1051–1072. doi: 10.1007/s00410-012-0847-0 CrossRefGoogle Scholar
  36. Didier A, Bosse V, Cherneva Z, et al. (2014) Syn-deformation fluid-assisted growth of monazite during renewed high-grade metamorphism in metapelites of the central Rhodope (Bulgaria, Greece). Chem Geol 381:206–222. doi: 10.1016/j.chemgeo.2014.05.020 CrossRefGoogle Scholar
  37. Duchene S, Blichert Toft J, Luais B, Telouk P, Lardeaux JM, Albarede F (1997) The Lu-Hf dating of garnets and the ages of the alpine high-pressure metamorphism. Nature 387:586–589CrossRefGoogle Scholar
  38. Dumont T, Champagnac J-D, Crouzet C, Rochat P (2008) Multistage shortening in the Dauphiné zone (French alps): the record of alpine collision and implications for pre-alpine restoration. Swiss J Geosci 101:89–110. doi: 10.1007/s00015-008-1280-2 CrossRefGoogle Scholar
  39. Fabre J (1961) Contribution à l’étude de la zone Houillère Briançonnaise en Maurienne et en Tarentaise (Alpes de Savoie). Mém Bur Rech Géol Min 2:315 ppGoogle Scholar
  40. Faure-Muret A (1955) Études géologiques Sur le massif de l’Argentera-Mercantour et ses enveloppes sédimentaires. Mém. Soc. Géol, France, 336 ppGoogle Scholar
  41. Fletcher IR, McNaughton NJ, Davis WJ, Rasmussen B (2010) Matrix effects and calibration limitations in ion probe U-Pb and Th-Pb dating of monazite. Chem Geol 270:31–44. doi: 10.1016/j.chemgeo.2009.11.003 CrossRefGoogle Scholar
  42. Freeman SR, Inger S, Butler RWH, Cliff RA (1997) Dating deformation using Rb-Sr in white mica: Greenschist facies deformation ages from the Entrelor shear zone, Italian alps. Tectonics 16:57–76. doi: 10.1029/96tc02477 CrossRefGoogle Scholar
  43. Freeman SR, Butler RWH, Cliff RA, Inger S, Barnicoat AC (1998) Deformation migration in an orogen-scale shear zone array: an example from the basal Briançonnais thrust, internal Franco-Italian alps. Geol Mag 135:349–367CrossRefGoogle Scholar
  44. Fudral S, Deville E, Nicoud G, Pognante U, Guillot PL, Jaillard E (1994) Geological map and explanatory text of the sheet n°776 Lanslebourg-Mont-d’Ambin, scale: 1, 50000. edn BRGMGoogle Scholar
  45. Fügenschuh B, Schmid SM (2003) Late stages of deformation and exhumation of an orogen constrained by fission-track data: a case study in the western alps. Geol Soc Am Bull 115:1425–1440CrossRefGoogle Scholar
  46. Fügenschuh B, Loprieno A, Ceriani S, Schmid SM (1999) Structural analysis of the Subbriançonnais and Valais units in the area of Moûtiers (savoy, western alps): paleogeographic and tectonic consequences. Int J Earth Sci 88:201–218CrossRefGoogle Scholar
  47. Gallagher K, Brown R, Johnson C (1998) Fission track analysis and its applications to geological problems. Annu Rev Earth Pl Sc 26:519–572CrossRefGoogle Scholar
  48. Gardés E, Jaoul O, Montel J-M, Seydoux-Guillaume A-M, Wirth R (2006) Pb diffusion in monazite: an experimental study of interdiffusion. Geochim Cosmochim Ac 70:2325–2336. doi: 10.1016/j.gca.2006.01.018 CrossRefGoogle Scholar
  49. Gardés E, Montel J-M, Seydoux-Guillaume A-M, Wirth R (2007) Pb diffusion in monazite: new constraints from the experimental study of interdiffusion. Geochim Cosmochim Ac 71:4036–4043. doi: 10.1016/j.gca.2007.06.036 CrossRefGoogle Scholar
  50. Gasquet D (1979) Etude pétrologique, géochimique et structurale des terrains cristallins de Belledonne et du Grand Chatelard traversés par les galeries EDF Arc-Isère, Alpes françaises. PhD thesis, Université de Grenoble, FranceGoogle Scholar
  51. Gasquet D, Bertrand JM, Paquette JL, Lehmann J, Ratzov G, Guedes RDA, Tiepolo M, Boullier AM, Scaillet S, Nomade S (2010) Miocene to Messinian deformation and hydrothermal activity in a pre-alpine basement massif of the French western alps: new U-Th-Pb and argon ages from the Lauzière massif. B Soc Geol Fr 181:227–241CrossRefGoogle Scholar
  52. Glotzbach C, Reinecker J, Danišík M, Rahn M, Frisch W, Spiegel C (2010) Thermal history of the central Gotthard and Aar massifs, European alps: evidence for steady state, long-term exhumation. J Geophys Res. doi: 10.1029/2009JF001304 Google Scholar
  53. Glotzbach C, van der Beek PA, Spiegel C (2011) Episodic exhumation and relief growth in the Mont Blanc massif, western alps from numerical modelling of thermochronology data. Earth Planet Sc Lett 304:417–430. doi: 10.1016/j.epsl.2011.02.020 CrossRefGoogle Scholar
  54. Gnos E, Janots E, Berger A, Whitehouse M, Walter F, Pettke T, C (2015) Age of cleft monazites in the eastern Tauern window: constraints on crystallization conditions of hydrothermal monazite. Swiss J Geosci doi: 10.1007/s00015-015-0178-z
  55. Grand’Homme A, Janots E, Seydoux-Guillaume A-M, Guillaume D, Bosse V, Magnin V (2016) Partial resetting of the U-Th-Pb systems in experimentally altered monazite: Nanoscale evidence of incomplete replacement. Geology G37770:1. doi: 10.1130/G37770.1 Google Scholar
  56. Harlov DE, Hetherington CJ (2010) Partial high-grade alteration of monazite using alkali-bearing fluids: experiment and nature. Am Mineral 95:1105–1108CrossRefGoogle Scholar
  57. Harlov DE, Wirth R, Hetherington CJ (2011) Fluid-mediated partial alteration in monazite: the role of coupled dissolution–reprecipitation in element redistribution and mass transfer. Contrib Mineral Petrol 162:329–348CrossRefGoogle Scholar
  58. Hetherington CJ, Harlov DE, Budzyń B (2010) Experimental metasomatism of monazite and xenotime: mineral stability, REE mobility and fluid composition. Mineral Petrol 99:165–184. doi: 10.1007/s00710-010-0110-1 CrossRefGoogle Scholar
  59. Jackson SE, Pearson NJ, Griffin WL, Belousova EA (2004) The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chem Geol 211:47–69. doi: 10.1016/j.chemgeo.2004.06.017 CrossRefGoogle Scholar
  60. Janots E, Rubatto D (2014) U–Th–Pb dating of collision in the external alpine domains (Urseren zone, Switzerland) using low temperature allanite and monazite. Lithos 184–187:155–166. doi: 10.1016/j.lithos.2013.10.036 CrossRefGoogle Scholar
  61. Janots E, Berger A, Gnos E, Whitehouse M, Lewin E, Pettke T (2012) Constraints on fluid evolution during metamorphism from U–Th–Pb systematics in alpine hydrothermal monazite. Chem Geol 326-327:61–71. doi: 10.1016/j.chemgeo.2012.07.014 CrossRefGoogle Scholar
  62. Kempe U, Lehmann B, Wolf D, Rodionov N, Bombach K, Schwengfelder U, Dietrich A (2008) U–Pb SHRIMP geochronology of Th-poor, hydrothermal monazite: an example from the Llallagua tin-porphyry deposit, Bolivia. Geochim Cosmochim Ac 72:4352–4366. doi: 10.1016/j.gca.2008.05.059 CrossRefGoogle Scholar
  63. Kirschner DL, Masson H, Cosca MA (2003) An 40 Ar/ 39 Ar, Rb/Sr, and stable isotope study of micas in low-grade fold-and-thrust belt: an example from the Swiss Helvetic alps. Contrib Mineral Petrol 145:460–480. doi: 10.1007/s00410-003-0461-2 CrossRefGoogle Scholar
  64. Kositcin N, McNaughton NJ, Griffin BJ, Fletcher IR, Groves DI, Rasmussen B (2003) Textural and geochemical discrimination between xenotime of different origin in the Archaean Witwatersrand Basin, South Africa. Geochim Cosmochim Ac 67:709–731. doi: 10.1016/S0016-7037(02)01169-9 CrossRefGoogle Scholar
  65. Kralik M, Clauer N, Holnsteiner R, Huemer H, Kappel F (1992) Recurrent fault activity in the grimsel test site (gts, Switzerland) - revealed by Rb-Sr, K-Ar and tritium isotope techniques. J Geol Soc Lond 149:293–301. doi: 10.1144/gsjgs.149.2.0293 CrossRefGoogle Scholar
  66. Krenn E, Putz H, Finger F, Paar WH (2011) Sulfur-rich monazite with high common Pb in ore-bearing schists from the Schellgaden mining district (Tauern window, eastern alps). Mineral Petrol 102:51–62. doi: 10.1007/s00710-011-0170-x CrossRefGoogle Scholar
  67. Lan Z-W, Chen ZQ, Li XH, Li B, Adams D (2013) Hydrothermal origin of the Paleoproterozoic xenotime from the king Leopold sandstone of the Kimberley group, Kimberley, NW Australia: implications for a ca 1.7 Ga far-field hydrothermal event. Aust J Earth Sci 60:497–508. doi: 10.1080/08120099.2013.806360 CrossRefGoogle Scholar
  68. Lanari P, Guillot S, Schwartz S, Vidal O, Tricart P, Riel N, Beyssac O (2012) Diachronous evolution of the alpine continental subduction wedge: evidence from P–T estimates in the Briançonnais zone houillère (France – western alps). J Geodyn 56-57:39–54. doi: 10.1016/j.jog.2011.09.006 CrossRefGoogle Scholar
  69. Lanari P, Rolland Y, Schwartz S, Vidal O, Guillot S, Tricart P, Dumont T (2014) P-T-t estimation of deformation in low-grade quartz-feldspar-bearing rocks using thermodynamic modelling and 40 Ar/ 39 Ar dating techniques: example of the plan-de-Phasy shear zone unit (Briançonnais zone, western alps). Terra Nov. 26:130–138. doi: 10.1111/ter.12079
  70. Lelarge L (1993) Thermochronologie par la méthode des traces de fission d’une marge passive (Dôme de Ponta Grossa, SE Brésil) et au sein d’une chaîne de collision (zone externe de l’arc alpin, France), PhD thesis, Université Joseph Fourier, Grenoble, FranceGoogle Scholar
  71. Leloup PH, Arnaud N, Sobel ER, Lacassin R (2005) Alpine thermal and structural evolution of the highest external crystalline massif: The Mont Blanc: Exhumation of the Mont Blanc massif. Tectonics 24:n/a–n/a. doi: 10.1029/2004TC001676
  72. Lemoine M, Bas T, Arnaud-Vanneau A, Arnaud H, Dumont T, Gidon M, Bourbon M, De Graciansky P, Rudkiewicz JL, Megard-Galli J, Tricart P (1986) The continental margin of the Mesozoic Tethys in the western alps. Mar Pet Geol 3:179–199. doi: 10.1016/0264-8172(86)90044-9 CrossRefGoogle Scholar
  73. Leutwein F, Poty B, Sonet J, Zimmerman JL (1970) Age des cavités à cristaux du granite du Mont Blanc. Cr Acad Sci D Nat 271:156–158Google Scholar
  74. Ludwig KR (2001) Isoplot/Ex rev. 2.49- A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology center. Special publication, No.1aGoogle Scholar
  75. Malusà MG, Vezzoli G (2006) Interplay between erosion and tectonics in the western alps: interplay between erosion and tectonics. Terra Nov. 18:104–108. doi: 10.1111/j.1365-3121.2006.00669.x
  76. Malusà MG, Polino R, Zattin M, Bigazzi G, Martin S, Piana F (2005) Miocene to present differential exhumation in the western alps: insights from fission track thermochronology: exhumation in the western alps. Tectonics 24:TC3004. doi: 10.1029/2004TC001782 CrossRefGoogle Scholar
  77. Marshall D, Pfeifer HR, Hunziker JC, Kirschner D (1998) A pressure-temperature-time path for the NE Mont-Blanc massif; fluid-inclusion, isotopic and thermobarometric evidence. Eur J Mineral 10:1227–1240CrossRefGoogle Scholar
  78. Mathieu R, Zetterström L, Cuney M, Gauthier-Lafaye F, Hidaka H (2001) Alteration of monazite and zircon and lead migration as geochemical tracers of fluid paleocirculations around the Oklo–Okélobondo and Bangombé natural nuclear reaction zones (Franceville basin, Gabon). Chem Geol 171:147–171CrossRefGoogle Scholar
  79. Michalski I, Soom M (1990) The alpine thermo-tectonic evolution of the Aar and Gotthard massifs, Central Switzerland: fission track ages on zircon and apatite and K-Ar mica ages. Schweiz Miner Petrogr 70:373–387Google Scholar
  80. Moine B, Bosse V, Paquette JL, Ortega E (2014) The occurrence of a Tonian–Cryogenian (~850 Ma) regional metamorphic event in Central Madagascar and the geodynamic setting of the Imorona–Itsindro (~800 Ma) magmatic suite. J Afr Earth Sci 94:58–73CrossRefGoogle Scholar
  81. Mullis J (1996) P-T-t path of quartz formation in extensional veins of the central alps. Schweiz Miner Petrog 76:159–164Google Scholar
  82. Mullis J, Dubessy J, Poty B, O’Neil J (1994) Fluid regimesduring late stages of a continental collision — physical, chemical, and stable-isotope measurements of fluid inclusions in fissure quartz from a geotraverse through the central alps. Switzerland Geochim Cosmochim Ac 10:2239–2267CrossRefGoogle Scholar
  83. Nziengui JJ (1993) Excès d’argon radiogénique dans les quartz des fissures tectoniques: implications pour la datation des séries métamorphiques. L’exemple de la coupe de la Romanche, Alpes Occidentales françaises. PhD thesis, Université Joseph Fourier, Grenoble, FranceGoogle Scholar
  84. Paquette JL, Tiepolo M (2007) High resolution (5 μm) U–Th–Pb isotope dating of monazite with excimer laser ablation (ELA)-ICPMS. Chem Geol 240:222–237. doi: 10.1016/j.chemgeo.2007.02.014 CrossRefGoogle Scholar
  85. Poitrasson F, Chenery S, Bland DJ (1996) Contrasted monazite hydrothermal alteration mechanisms and their geochemical implications. Earth Planet Sc Lett 145:79–96CrossRefGoogle Scholar
  86. Poitrasson F, Chenery S, Shepherd TJ (2000) Electron microprobe and LA-ICP-MS study of monazite hydrothermal alteration:: Implications for U-Th-Pb geochronology and nuclear ceramics. Geochim Cosmochim Ac 64:3283–3297Google Scholar
  87. Poujol M, Boulvais P, Kosler J (2010) In-situ LA-ICP-MS U–Th–Pb dating of metasomaticfluid circulation: evidence of regional-scale albitization in the Pyrénées. J Geol Soc Lond 167:751–767CrossRefGoogle Scholar
  88. Putnis A (2002) Mineral replacement reactions: from macroscopic observations to microscopic mechanisms. Mineral Mag 66:689–708. doi: 10.1180/0026461026650056 CrossRefGoogle Scholar
  89. Putnis A, Austrheim H (2010) Fluid-induced processes: metasomatism and metamorphism. Geofluids 10:254–269. doi: 10.1111/j.1468-8123.2010.00285.x Google Scholar
  90. Putnis A, Putnis CV (2007) The mechanism of reequilibration of solids in the presence of a fluid phase. J Solid State Chem 180:1783–1786. doi: 10.1016/j.jssc.2007.03.023 CrossRefGoogle Scholar
  91. Pyle JM (2006) Temperature-time paths from phosphate accessory phase paragenesis in the honey brook upland and associated cover sequence, SE Pennsylvania, USA. Lithos 88:201–232. doi: 10.1016/j.lithos.2005.08.010 CrossRefGoogle Scholar
  92. Rasmussen B (2005) Radiometric dating of sedimentary rocks: the application of diagenetic xenotime geochronology. Earth-Sci Rev 68:197–243. doi: 10.1016/j.earscirev.2004.05.004 CrossRefGoogle Scholar
  93. Rasmussen B, Fletcher IR, Muhling JR, Thorne WS, Broadbent GC (2007) Prolonged history of episodic fluid flow in giant hematite ore bodies: evidence from in situ U–Pb geochronology of hydrothermal xenotime. Earth Planet Sc Lett 258:249–259. doi: 10.1016/j.epsl.2007.03.033 CrossRefGoogle Scholar
  94. Roger F, Teyssier C, Respaut JP, Rey PF, Jolivet M, Whitney DL, Paquette JL, Brunel M (2015) Timing of formation and exhumation of the Montagne noire double dome, French massif central. Tectonophysics 640-641:53–69. doi: 10.1016/j.tecto.2014.12.002 CrossRefGoogle Scholar
  95. Rolland Y, Cox S, Boullier AM, Pennacchioni G, Mancktelow N (2003) Rare earth and trace element mobility in mid-crustal shear zones: insights from the Mont Blanc massif (western alps). Earth Planet Sc Lett 214:203–219. doi: 10.1016/S0012-821X(03)00372-8 CrossRefGoogle Scholar
  96. Rolland Y, Rossi M, Cox SF, Corsini M, Mancktelow N, Pennacchioni G, Fornari M, Boullier AM (2008) 40Ar/39Ar dating of synkinematic white mica: insights from fluid-rock reaction in low-grade shear zones (Mont Blanc massif) and constraints on timing of deformation in the NW external alps. Geol Soc Spec Publ 299:293–315. doi: 10.1144/SP299.18 CrossRefGoogle Scholar
  97. Rolland Y, Cox SF, Corsini M (2009) Constraining deformation stages in brittle–ductile shear zones from combined field mapping and 40Ar/39Ar dating: the structural evolution of the Grimsel pass area (Aar massif, Swiss alps). J Struct Geol 31:1377–1394. doi: 10.1016/j.jsg.2009.08.003 CrossRefGoogle Scholar
  98. Rossi M, Rolland Y (2014) Stable isotope and Ar/Ar evidence of prolonged multiscale fluid flow during exhumation of orogenic crust: example from the Mont Blanc and Aar massifs (NW alps): multi-scale fluid flow in the alps. Tectonics 33:1681–1709. doi: 10.1002/2013TC003438 CrossRefGoogle Scholar
  99. Rossi M, Rolland Y, Vidal O, Cox SF (2005) Geochemical variations and element transfer during shear-zone development and related episyenites at middle crust depths: insights from the Mont Blanc granite (French—Italian alps). Geol Soc Spec Publ 245:373–396CrossRefGoogle Scholar
  100. Rubatto D, Gebauer D, Compagnoni R (1999) Dating of eclogite-facies zircons: the age of alpine metamorphism in the Sesia-Lanzo zone (western alps). Earth Planet Sc Lett 167:141–158. doi: 10.1016/S0012-821X(99)00031-X CrossRefGoogle Scholar
  101. Sabil N (1995) La datation par traces de fission: aspects méthodologiques et applications thermochronologiques en contexte Alpin et de Marge Continentale. PhD thesis, Université Joseph Fourier, Grenoble, FranceGoogle Scholar
  102. Sanchez G, Rolland Y, Jolivet M, Brichau S, Corsini M, Carter A (2011a) Exhumation controlled by transcurrent tectonics: the Argentera-Mercantour massif (SW alps): exhumation controlled by transcurrent tectonics in SW alps. Terra Nov. 23:116–126. doi: 10.1111/j.1365-3121.2011.00991.x
  103. Sanchez G, Rolland Y, Schneider J, Corsini M, Oliot E, Goncalves P, Verati C, Lardeaux J-M, Marquer D (2011b) Dating low-temperature deformation by 40Ar/39Ar on white mica, insights from the Argentera-Mercantour massif (SW alps). Lithos 125:521–536. doi: 10.1016/j.lithos.2011.03.009 CrossRefGoogle Scholar
  104. Schärer U (1984) The effect of initial Th-230 disequilibrium on young U-Pb ages - the makalu case, himalaya. Earth Planet Sc Lett 67:191–204. doi: 10.1016/0012-821x(84)90114-6 CrossRefGoogle Scholar
  105. Schmid SM, Kissling E (2000) The arc of the western alps in the light of geophysical data on deep crustal structure. Tectonics 19:62–85. doi: 10.1029/1999TC900057 CrossRefGoogle Scholar
  106. Schmid SM, Fügenschuh B, Kissling E, Schuster R (2004) Tectonic map and overall architecture of the alpine orogen. Eclogae Geol Helv 97:93–117. doi: 10.1007/s00015-004-1113-x CrossRefGoogle Scholar
  107. Schwartz S (2000) La zone piémontaise des Alpes occidentales: un paléo-complexe de subduction. Arguments métamorphiques, géochronologiques et structuraux. PhD thesis, Université Claude Bernard, Lyon, FranceGoogle Scholar
  108. Schwartz S, Lardeaux JM, Tricart P, Guillot S, Labrin E (2007) Diachronous exhumation of HP/LT metamorphic rocks from south-western alps: evidence from fission-track analysis. Terra Nov. 19:133–140. doi: 10.1111/j.1365-3121.2006.00728.x
  109. Seward D, Mancktelow NS (1994) Neogene kinematics of the central and western alps: evidence from fission-track dating. Geology 22:803–806CrossRefGoogle Scholar
  110. Seward D, Ford M, Bürgisser J, Lickorish H, Williams FA, Meckel LD (1999) Preliminary results of fission track analyses in the southern Pelvoux area, SE France. 3rd workshop on alpine geological studies. Mem Sci Geo Padova 51:25–31Google Scholar
  111. Seydoux-Guillaume AM, Paquette J-L, Wiedenbeck M, Montel JM, Heinrich W (2002) Experimental resetting of the U–Th–Pb systems in monazite. Chem Geol 191:165–181CrossRefGoogle Scholar
  112. Seydoux-Guillaume AM, Wirth R, Deutsch A, and Schärer U (2004) Microstructure of 24–1928 maconcordant monazites: implications for geochronology and nuclear waste deposits. Geochimica et Cosmochimica Acta 68:2517–2527. doi: 10.1016/j.gca.2003.10.042
  113. Seydoux-Guillaume AM, Montel JM, Bingen B, Bosse V, de Parseval P, Paquette JL, Janots E, Wirth R (2012) Low-temperature alteration of monazite: fluid mediated coupled dissolution–precipitation, irradiation damage, and disturbance of the U–Pb and Th–Pb chronometers. Chem Geol 330-331:140–158. doi: 10.1016/j.chemgeo.2012.07.031 CrossRefGoogle Scholar
  114. Simon-Labric T, Rolland Y, Dumont T, Heymes T, Authemayou C, Corsini M, Fornari M (2009) 40 Ar/ 39 Ar dating of Penninic front tectonic displacement (W alps) during the lower Oligocene (31-34 Ma). Terra Nov. 21:127–136. doi: 10.1111/j.1365-3121.2009.00865.x
  115. Soom MA (1990) Abkühlungs- und Hebungsgeschichte der Externmassive und der Penninischen decken beidseits der Simplon-Rhone-Linie seit dem Oligozan: Spaltspurdatierungen an Apatit/Zirkon und K/Ar Datierungen an Biotit/Muskowit (westliche Zentralalpen). PhD thesis, Universität Bern, SwitzerlandGoogle Scholar
  116. Strzerzynski P, Guillot S, Leloup PH, Arnaud N, Vidal O, Ledru P, Courrioux G, Darmendrail X (2012) Tectono-metamorphic evolution of the Briançonnais zone (Modane-Aussois and southern Vanoise units, Lyon Turin transect, western alps). J Geodyn 56-57:55–75. doi: 10.1016/j.jog.2011.11.010 CrossRefGoogle Scholar
  117. Tartese R, Boulvais P, Poujol M, Chevalier T, Paquette JL, Ireland TR, Deloule E (2012) Mylonites of the south Armorican shear zone: insights for crustal-scale fluid flow and water-rock interaction processes. J Geodyn 56-57:86–107. doi: 10.1016/j.jog.2011.05.003 CrossRefGoogle Scholar
  118. Tartèse R, Poujol M, Gloaguen E, Boulvais P, Drost K, Košler J, Ntaflos T (2015) Hydrothermal activity during tectonic building of the Variscan orogen recorded by U-Pb systematics of xenotime in the Grès Armoricain formation, massif Armoricain, France. Mineral Petrol 109:485–500. doi: 10.1007/s00710-015-0373-7 CrossRefGoogle Scholar
  119. Teufel S, Heinrich W (1997) Partial resetting of the U-Pb isotope system in monazite through hydrothermal experiments: an SEM and U-Pb isotope study. Chem Geol 137:273–281CrossRefGoogle Scholar
  120. Thiébaud E, Dzikowski M, Gasquet D, Renac C (2010) Reconstruction of groundwater flows and chemical water evolution in an amagmatic hydrothermal system (La Léchère, French alps). J Hydrol 381:189–202. doi: 10.1016/j.jhydrol.2009.11.041 CrossRefGoogle Scholar
  121. Townsend KJ, Miller CF, D’Andrea JL, Ayers JC, Harrison TM, Coath CD (2001) Low temperature replacement of monazite in the Ireteba granite, southern Nevada: geochronological implications. Chem Geol 172:95–112. doi: 10.1016/S0009-2541(00)00238-2 CrossRefGoogle Scholar
  122. Tricart P, Van Der Beek P, Schwartz S, Labrin E (2007) Diachronous late-stage exhumation across the western alpine arc: constraints from apatite fission-track thermochronology between the Pelvoux and Dora-Maira massifs. J Geol Soc Lond 164:163–174CrossRefGoogle Scholar
  123. Vallini DA, Cannon WF, Schulz KJ (2006) Age constraints for Paleoproterozoic glaciation in the Lake superior region: detrital zircon and hydrothermal xenotime ages for the Chocolay group, Marquette range Supergroup. Can J Earth Sci 43:571–591. doi: 10.1139/e06-010 CrossRefGoogle Scholar
  124. Van Achterbergh E, Ryan CG, Jackson SE, Griffin W (2001) Data reduction software for LA-ICP-MS. In: Sylvester P (ed) Laser ablation-ICP-MS in the Earth Science Mineralogical Association of Canada 29:239–243Google Scholar
  125. Van der Beek PA, Valla PG, Herman F, Braun J, Persano C, Dobson KJ, Labrin E (2010) Inversion of thermochronological age–elevation profiles to extract independent estimates of denudation and relief history — II: application to the French western alps. Earth Planet Sc Lett 296:9–22. doi: 10.1016/j.epsl.2010.04.032 CrossRefGoogle Scholar
  126. Vance J (1999) Zircon fission track evidence for a Jurassic (Tethyan) thermal event in the western alps. Memorie di Scienze Geologiche, Padova 51:473–476Google Scholar
  127. VanEmden B, Thornber MR, Graham J, Lincoln FJ (1997) The incorporation of actinides in monazite and xenotime from placer deposits in Western Australia. Can Mineral 35:95–104Google Scholar
  128. Villa IM, Bucher S, Bousquet R, Kleinhanns IC, Schmid SM (2014) Dating polygenetic metamorphic assemblages along a transect across the western alps. J Petrol 55:803–830. doi: 10.1093/petrology/egu007 CrossRefGoogle Scholar
  129. Williams ML, Jercinovic MJ, Harlov DE, Budzyń B, Hetherington CJ (2011) Resetting monazite ages during fluid-related alteration. Chem Geol 283:218–225. doi: 10.1016/j.chemgeo.2011.01.019 CrossRefGoogle Scholar
  130. Yamada R, Tagami T, Nishimura S, Ito H (1995) Annealing kinetics of fission tracks in zircon - an experimental-study. Chem Geol 122:249–258. doi: 10.1016/0009-2541(95)00006-8 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  • A. Grand’Homme
    • 1
  • E. Janots
    • 1
  • V. Bosse
    • 2
  • A. M. Seydoux-Guillaume
    • 3
  • R. De Ascenção Guedes
    • 4
  1. 1.Insitut des Sciences de la TerreUniversité Grenoble AlpesGrenobleFrance
  2. 2.Laboratoire Magmas et VolcansUniversité Blaise Pascal CNRS-IRD, OPGCClermont FerrandFrance
  3. 3.Laboratoire Magmas et VolcansUMR 6524 CNRS-UBP-UJM-IRDSaint EtienneFrance
  4. 4.Editions du PiatSaint-Julien-du-PinetFrance

Personalised recommendations