Mineralogy and Petrology

, Volume 110, Issue 6, pp 731–746 | Cite as

Melt evolution in felsic dikes inferred from the composition of gahnite in two new occurrences, Pala Chief and Elizabeth R composite dikes, California

  • Adriana Heimann
  • Jason A. Yonts
  • Michael A. Wise
Original Paper


We report the occurrence and composition of gahnite ([Zn,Fe,Mg,Mn]Al2O4) in aplites of the Pala Chief and Elizabeth R layered pegmatite-aplite dikes, Pala District, California, and the significance for felsic melt evolution. The aplite is characterized by alternating bands of white, fine-grained plagioclase + quartz + muscovite +/− black tourmaline and thin laminations defined by concentrations of reddish-brown garnet (“line rock”). Accessory gahnite occurs as extremely fine-grained (50–250 μm) green to bluish-green crystals. Gahnite compositions in both occurrences are similar and defined by end-member ranges Ghn83.5–90.9Hc8.7–15Spl0–1.4. Zinc contents in gahnite are high (36.7–39.5 wt.% ZnO for Pala Chief, 37.2–40.2 wt.% ZnO for Elizabeth R), the MgO and MnO contents are negligible (< 0.7 wt.%), and Fe is the main substitution present (< 6.9 wt.% FeO). Gahnite is chemically zoned and characterized by higher Zn (< 2 wt.% ZnO) and lower Fe, Mg, and Mn contents in rims compared to cores, which shows the substitution mechanism, and reflects fast growth during melt evolution via fractional crystallization followed by fast cooling. Compositional variations are greater within individual crystals than among crystals and between laminations, which indicate a homogeneous melt at the aplite scale. Compared with the composition of gahnite from pegmatites worldwide, the studied gahnite reflects a moderate degree of melt evolution. This study confirms the incompatible character of Zn in evolving pegmatite-aplite melts and shows the usefulness of gahnite as a petrogenetic indicator. Because gahnite is a resistant mineral, surficial findings of gahnite with very low Mg contents and Zn contents similar or higher than those measured here may indicate a source of granitic pegmatite-aplite.


Gahnite Aplite California Elizabeth R Pala Chief Zoning Evolution Pala District 



Funding for this project was provided by the Harriot College of Arts and Sciences and the Division of Research and Graduate Studies at East Carolina University and by a U.S. Geological Survey Mineral Resources External Research Program grant (# G10AP00051; to AH), for which we are grateful. Additional funding was graciously provided by a Society of Economic Geologists McKinstry Research Grant and a Sigma Xi, The Scientific Research Society, grant-in-aid of research (to JY). This work would not have been possible without the generosity of David London, who provided the samples for study as well as helpful discussions and comments from an early version of the manuscript. We thank Nick Foster for help with EMP analysis at FSU and Tom Fink for help with SEM analysis at ECU. Josh Bitner is thanked for cutting the samples. Associate Editor Leonid Danyushevsky handled the manuscript and provided suggestions while David Lentz and Aleksandr Stepanov provided constructive reviews, all of which helped improve the original manuscript and are greatly appreciated.


  1. Alfonso P, Corbella M, Melgarejo JC (1995) Nb-Ta-minerals from the Cap de Creus pegmatite field, eastern Pyrenees: distribution and geochemical trends. Mineral Petrol 55:53–69CrossRefGoogle Scholar
  2. Alfonso P, Melgarejo JC, Yusta I, Velasco F (2003) Geochemistry of feldspars and muscovite in granitic pegmatite from the Cap de Creus field, Catalonia, Spain. Can Mineral 41:103–116CrossRefGoogle Scholar
  3. Batchelor R, Kinnaird J (1984) Gahnite compositions compared. Mineral Mag 48:425–429CrossRefGoogle Scholar
  4. Beurlen H, Thomas R, Rodrigues da Silva MR, Müller A, Rhede D, Rodrigues Soares D (2014) Perspectives for Li- and Ta-mineralization in the Borborema Pegmatite Province, NE Brazil: a review. J South Am Earth Sc 56:110–127CrossRefGoogle Scholar
  5. Burt DM (1988) Stability of genthelvite, Zn4(BeSiO4)3S: an exercise in chalcophilicity using exchange operators. Amer Mineral 73:1384–1394Google Scholar
  6. Černý P (1991) Rare element granitic pegmatites. Part 1: Anatomy and internal evolution of pegmatite deposits. Geosci Canada 18:49–67Google Scholar
  7. Černý P, Ercit TS (2005) The classification of granitic pegmatites revisited. Can Mineral 43:2005–2026CrossRefGoogle Scholar
  8. Černý P, Hawthorne FC (1982) Selected peraluminous minerals. Mineral Assoc Canada Short Course Handbook 8:163–186Google Scholar
  9. Černý P, Meintzer RE, Anderson AJ (1985) Extreme fractionation in rare-element granitic pegmatites: selected examples of data and mechanisms. Can Mineral 23:381–421Google Scholar
  10. Černý P, London D, Novák M (2012) Granitic pegmatites as reflections of their sources. Elements 8:289–294CrossRefGoogle Scholar
  11. Chappell BW, White AJR (2001) Two contrasting granite types: 25 years later. Austral J Earth Sci 48:489–499CrossRefGoogle Scholar
  12. Dunlop SD (2000) Gahnite from metamorphosed massive sulphide deposits and rare-element pegmatites: development of discriminators based on bedrock and overburden samples. M.Sc. Thesis, Laurentian Univ, Sudbury, Ontario, 169 ppGoogle Scholar
  13. Eskola P (1914) An occurrence of gahnite in pegmatite near Träskböle in Perniö, Finland. Geologiska Föreningen i Stockholm Förhandlingar 36:25–30CrossRefGoogle Scholar
  14. Fisher J (2002) Gem and rare-element pegmatites of southern California. Mineral Record 33:363–407Google Scholar
  15. Fisher J (2011) Mines and minerals of the Southern California Pegmatite Province. Rocks and Minerals 86:14–35CrossRefGoogle Scholar
  16. Foord EE (1977) Famous mineral localities: the Himalaya dike system, Mesa Grande District, San Diego County, California. Mineral Record 8:461–474Google Scholar
  17. Foord EE, Spaulding LB Jr, Mason R, Martin RF (1989) Mineralogy and paragenesis of the Little Three mine pegmatites, Ramona District, San Diego County, California. Mineral Record 20:101–127Google Scholar
  18. Foord EE, London D, Kampf AR, Shigley, JE, Snee, LW (1991) Gem-bearing pegmatites of San Diego County, California. In: Walawender MJ, Hanan BB (eds) Geological Excursions in Southern California and Mexico, Geological Society of America Guidebook, Annual Meeting Field Trip Guide No. 9, Boulder, CO. Geol Society of America, pp 3563–3592Google Scholar
  19. Galliski MA, Márquez-Zavalía MF, Lira R, Cempírek J, Škoda R (2012) Mineralogy and origin of the dumortierite-bearing pegmatites of Virorco, San Luis, Argentina. Can Mineral 50:873–894CrossRefGoogle Scholar
  20. Goad BE, Černý P (1981) Peraluminous pegmatitic granites and their pegmatite aureoles in the Winnipeg River district, southeastern Manitoba. Can Mineral 19:177–194Google Scholar
  21. Gomes LC, Castro P, Alves C (1995) Caracterização de espinelas zincíferas e do par ganite-nigerite no campo aplito-pegmatítico da Serra de Arga-Minho- N de Portugal. Memórias, Publ Museu Lab Min Geol, Univ Porto, vol 4, pp 629–633Google Scholar
  22. Heimann A, Spry PG, Teale GS (2005) Zincian spinel associated with metamorphosed Proterozoic base-metal sulfide occurrences, Colorado: a re-evaluation of gahnite composition as a guide in exploration. Can Mineral 43:601–622CrossRefGoogle Scholar
  23. Heimann A, Spry PG, Jacobson CE (2006) Coronas, symplectic textures, and reactions involving aluminous minerals in gedrite-cordierite-garnet gneiss from Evergreen, Front Range, Colorado. Can Mineral 44:1025–1044CrossRefGoogle Scholar
  24. Heimann A, Yonts JA, Galliski MA (2015) The composition of gahnite in granitic pegmatites from the Pampean Pegmatite Province, Argentina: Implications for pegmatite fractionation. Can Mineral 53:1–26Google Scholar
  25. Heinrich KFJ (1991) Strategies of electron probe data reduction. In: Heinrich KFJ, Newbury DE (eds) Electron probe quantitation. Plenum, New York, pp 9–18CrossRefGoogle Scholar
  26. Houser CE (2013) Structural controls and mineralogical indicators for the formation and distribution of pockets in the Elizabeth R mine, Pala, San Diego County, California. In: Olson B (ed) San Luis Rey on Display: Geoscience in Northern San Diego County. San Diego Association of Geologists 2013 Field Trip Guidebook, pp 59–74Google Scholar
  27. Jahns RH (1979) Gem-bearing pegmatites in San Diego County, California: the Stewart mine, Pala district and the Himalaya mine, Mesa Grande district. In: Abbott PL, Todd VR (eds) Mesozoic crystalline rocks. San Diego State Univ, San Diego, pp 3–38Google Scholar
  28. Jahns RH (1982) Internal evolution of granitic pegmatites. In: Černý P (ed) Granitic pegmatites in science and industry. Mineral Assoc Canada Short Course Handbook 8:293–328Google Scholar
  29. Jahns RH, Tuttle OF (1963) Layered pegmatite-aplite intrusives. International Mineralogical Association, papers, Proceedings 3rd general meeting. Mineral Soc Amer Spec Paper 1:78–92Google Scholar
  30. Jahns RH, Wright LA (1951) Gem- and lithium-bearing pegmatites of the Pala district, San Diego County, California. California Division of Mines, Special Report 7-A:72 ppGoogle Scholar
  31. Johnson RG (1998) Mineralogy and geochemistry of the Lord Hill pegmatite. University of New Orleans, New Orleans, Louisiana, M.S. Thesis, 127 ppGoogle Scholar
  32. Kimbrough DL, Grove M, Morton DM (2015) Timing and significance of gabbro emplacement within two distinct plutonic domains of the Peninsular Ranges batholith, southern and Baja California. Geol Soc Amer Bull 127:19–37CrossRefGoogle Scholar
  33. Kleck WD, Foord EE (1999) The chemistry, mineralogy, and petrology of the George Ashley Block pegmatite body. Amer Mineral 84:695–707CrossRefGoogle Scholar
  34. Krummenacher D, Gastil RG, Bushee J, Doupont J (1975) K-Ar apparent ages, Peninsular Ranges batholith, southern California and Baja California. Geol Soc Amer Bull 86:760–768CrossRefGoogle Scholar
  35. Lesure FG (1968) Mica deposits of the Blue Ridge in North Carolina. U.S. Geol Surv Prof Paper 577, 124 ppGoogle Scholar
  36. Li Z, Zhang W, Yang R, Li W, Zhai W (1999) Analysis of chemical composition of melt inclusion of beryl in pegmatite and discovery of zinc-spinel by electronic probe. Chin Sci Bull 44:2004–2010CrossRefGoogle Scholar
  37. London D, Morgan GB, Paul KA, Guttery BM (2012) Internal evolution of miarolitic granitic pegmatites at the Little Three mine, Ramona, California. Can Mineral 50:1025–1054CrossRefGoogle Scholar
  38. Martin RF, De Vito C, Pezzotta F (2008) Why is amazonitic K-feldspar an earmark of NYF-type granitic pegmatites? Clues from hybrid pegmatites in Madagascar. Amer Mineral 93:263–269CrossRefGoogle Scholar
  39. McClenaghan MB (2005) Indicator mineral methods in mineral exploration. Geochemistry: Exploration, Environment, Analysis 5:233–245Google Scholar
  40. Merino E, Villaseca C, Pérez-Soba C, Orejana D (2010) First occurrence of gahnite and chrysoberyl in an Iberian Hercynian pluton: the Belvís de Monroy granite (NE Cáceres, Spain). Revista de la Sociedad Española de Mineralogía 13:159–160Google Scholar
  41. Merino E, Villaseca C, Orejana D, Jeffries T (2013) Gahnite, chrysoberyl and beryl co-occurrence as accessory minerals in a highly evolved peraluminous pluton: the Belvís de Monroy leucogranite (Cáceres, Spain). Lithos 179:137–156CrossRefGoogle Scholar
  42. Morgan GB, London D (1999) Crystallization of the Little Three layered pegmatite-aplite dike, Ramona District, California. Contrib Mineral Petrol 136:310–330CrossRefGoogle Scholar
  43. Morris TF, Breaks FW, Averill SA, Crabtree DC, McDonald A (1997) Gahnite composition: implications for base metal and rare-element exploration. Exploration Mining Geol 6:253–260Google Scholar
  44. Neiva AMR (2013) Micas, feldspars and columbite–tantalite minerals from the zoned granitic lepidolite-subtype pegmatite at Namivo, Alto Ligonha, Mozambique. Eur J Mineral 25:967–985CrossRefGoogle Scholar
  45. Neiva AMR, Champness PE (1997) Nigerite and gahnite from the granitic pegmatite veins of Cabanas, Ponte do Lima, northern Portugal. Neues Jahrbuch Für Mineralogie - Monatshefte 1997:384–409Google Scholar
  46. Nêmec D (1973) Das Vorkommen der Zn-Spinelle in der Böhmischen masse. TMPM Tschermaks Mineral Petrogr Mitt 19:95–109 (in German)CrossRefGoogle Scholar
  47. Pehrman G (1948) Gahnit von Rosendal auf Kimito, SW Finnland. Bulletin of the Geological Institution of the University of Uppsala 32:329–336 (in German)Google Scholar
  48. Selway JB, Breaks FW, Tindle AG (2005) A review of rare-element (Li-Cs-Ta) pegmatite exploration techniques for the Superior Province, Canada, and large worldwide tantalum deposits. Exploration Mining Geol 14:1–30CrossRefGoogle Scholar
  49. Shigley JE, Brown GE Jr (1985) Occurrence and alteration of phosphate minerals at the Stewart Pegmatite, Pala District, San Diego County, California. Amer Mineral 70:395–408Google Scholar
  50. Shore M, Fowler AD (1996) Oscillatory zoning in minerals: a common phenomenon. Can Mineral 34:1111–1126Google Scholar
  51. Simpson DR (1962) Graphic granite from the Ramona pegmatite district, California. Amer Mineral 47:1123–1138Google Scholar
  52. Simpson DR (1965) Geology of the central part of the Ramona pegmatite district, San Diego County, California. California Division of Mines and Geology, Special Report 86:3–23Google Scholar
  53. Sinkankas J (1997) Gemstones of North America, vol 3. Geoscience Press, Tucson, 526 ppGoogle Scholar
  54. Soares, DR (2004) Contribuição à petrologia de pegmatitos mineralizados em elementos raros e elbaítas gemológicas da Província Pegmatítica da Borborema, Nordeste do Brasil. Ph.D. Thesis, Universidade Federal de Pernambuco, Recife, Brazil, 271 pp (in Portuguese)Google Scholar
  55. Soares DR, Beurlen H, Ferreira ACM, Silva MRR (2007) Chemical composition of gahnite and degree of pegmatitic fractionation in the Borborema Pegmatitic Province, northeastern Brazil. Anais Academia Brasileira de Ciências 79:395–404Google Scholar
  56. Soares DR, Beurlen H, de Brito BS, Silva MRR, Ferreira ACM (2008) Compositional variation of tourmaline-group minerals in the Borborema Pegmatite Province, northeastern Brazil. Can Mineral 46:1097–1116CrossRefGoogle Scholar
  57. Soares DR, Beurlen H, Ferreira ACM, Costa Gomes MM, Barreto SB, Anastásio EM (2009) Elevated zinc contents in elbaites from pegmatites of the Borborema Pegmatite Province, NE Brazil. Estudos Geologicos 19:348–351Google Scholar
  58. Soares DR, Ferreira ACM, Beurlen H, Lima RJ-S, Filho JS, Neto ML (2012) Estudo de espectroscopia de absorção UV-VIS da gahnita gemológica do pegmatito Alto Mirador, Província Pegmatítica da Borborema, NE do Brasil. Estudos Geologicos 22(2):21–32 (in Portuguese)CrossRefGoogle Scholar
  59. Soares DR, Ferreira ACM, Lima RJ-S, Filho JS (2014) Gahnita gemológica do Alto Mirador, Provincia Pegmatítica da Borborema, NE do Brasil: Estudo da estrutura cristalina por refinamento Rietveld. XIX Congreso Geológico Argentino, Córdoba, pp T7–T7 (in Portuguese)Google Scholar
  60. Spry PG, Scott SD (1986a) The stability of zincian spinels in sulfide systems and their potential as exploration guides for metamorphosed massive sulfide deposits. Econ Geol 81:1446–1463CrossRefGoogle Scholar
  61. Spry PG, Scott SD (1986b) Zincian spinel and staurolite as guides to ore in the Appalachians and Scandinavian Caledonides. Can Mineral 24:147–163Google Scholar
  62. Stern LA, Brown GE Jr, Bird DK, Jahns RH, Foord EE, Shigley JE, Spaulding LB Jr (1986) Mineralogy and geochemical evolution of the Little Three pegmatite-aplite layered intrusive, Ramona, California. Amer Mineral 71:406–427Google Scholar
  63. Symons DTA, Smith TE, Kawasaki K, Walawender MJ (2009) Paleomagnetism of the mid-Cretaceous gem-bearing pegmatite dikes of San Diego County, California, USA. Can J Earth Sci 46:675–687Google Scholar
  64. Szuszkiewicz A, Łobos K (2004) Gahnite from Siedlimowice, Strzegom-Sobótka granitic massif, SW Poland. Mineral Pol 35:15–21Google Scholar
  65. Taylor SR (1965) Application of trace elements data to problems in petrology. Phys Chem Earth 6:133–213CrossRefGoogle Scholar
  66. Tulloch AJ (1981) Gahnite and columbite in an alkali–feldspar granite from New Zealand. Mineral Mag 44:275–278CrossRefGoogle Scholar
  67. von Knorring O, Dearnley R (1960) The Lewisian pegmatites of South Harris, outer Hebrides. Mineral Mag 32:366–378CrossRefGoogle Scholar
  68. Webber KL, Falster AU, Simmons WB, Foord EE (1997) The role of diffusion-controlled oscillatory nucleation in the formation of line rock in pegmatite–aplite dikes. J Petrol 38:1777–1791CrossRefGoogle Scholar
  69. Webber KL, Simmons WB, Falster AU, Foord EE (1999) Cooling rates and crystallization dynamics of shallow level pegmatite-aplite dikes, San Diego County, California. Amer Mineral 84:708–717CrossRefGoogle Scholar
  70. Whalen JB, Currie KL, Chappell BW (1987) A-type granites: geochemical characteristics, discrimination and petrogenesis. Contrib Mineral Petrol 95:407–419CrossRefGoogle Scholar
  71. Wise MA, Francis CA (1992) Distribution, classification and geological setting of granitic pegmatites in Maine. Northeastern Geol 14:82–93Google Scholar
  72. Wise MA, Francis CA, Černý P (2012) Compositional and structural variations in columbite-group minerals from granitic pegmatites of the Brunswick and Oxford fields, Maine: differential trends in F-poor and F-rich environments. Can Mineral 50:1515–1530CrossRefGoogle Scholar
  73. Yonts JA (2014) Major and trace element chemical composition of gahnite from granitic pegmatites and a metamorphosed massive sulfide deposit: significance for pegmatite fractionation and discrimination between Li-rich and Li-poor pegmatites. East Carolina Univ, Greenville, North Carolina, M.S. Thesis, 148 ppGoogle Scholar
  74. Zhang Y (2010) Diffusion in minerals and melts: theoretical background. Rev Mineral Geochem 72:5–59CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  • Adriana Heimann
    • 1
  • Jason A. Yonts
    • 1
  • Michael A. Wise
    • 2
  1. 1.Department of Geological SciencesEast Carolina UniversityNorthUSA
  2. 2.Department of Mineral SciencesSmithsonian InstitutionWashingtonUSA

Personalised recommendations