Advertisement

Mineralogy and Petrology

, Volume 110, Issue 5, pp 581–599 | Cite as

Fluid-mediated alteration of (Y,REE,U,Th)–(Nb,Ta,Ti) oxide minerals in granitic pegmatite from the Evje-Iveland district, southern Norway

  • Charley J. Duran
  • Anne-Magali Seydoux-Guillaume
  • Bernard Bingen
  • Sophie Gouy
  • Philippe de Parseval
  • Jannick Ingrin
  • Damien Guillaume
Original Paper

Abstract

We document the textural relations and chemical composition of (Y,REE,U,Th)–(Nb,Ta,Ti) oxide minerals in a granitic pegmatite from the Evje-Iveland district, southern Norway, using a combination of scanning and transmission electron microscopy, electron probe micro-analysis and infrared absorption spectroscopy. The (Y,REE,U,Th)–(Nb,Ta,Ti) oxide mineral is euxenite, which is strongly radiation damaged and surrounded by radial fractures. Within euxenite grains, three domains of distinct composition comprising unaltered, intermediate and altered euxenite, have been identified. In most cases pyrochlore occurs as corroded grain boundaries around euxenite and within relict fractures. Intermediate and altered euxenite are depleted in U, Pb, Ti, Nb, and Y, but enriched in Si and Ca relative to unaltered euxenite. Pyrochlore is also enriched in Fe, Pb, Zr and LREE relative to all euxenite phases. Altered domains of euxenite have deficient analytical totals and contain O-H. These domains are metamict and contain nanopores and nanodomains enriched in U and Ca. We suggest that as radiation damage accumulated in euxenite, radial fractures developed around the euxenite grains, thus allowing fluid infiltration. In the presence of fluid, euxenite was replaced by secondary euxenite then pyrochlore, owing to dissolution-precipitation and diffusion reactions. During alteration, U and the strategic metals Nb, Ti, and REE were mobilized at both the nanoscale and the scale of the pegmatite.

Keywords

Galena Oxide Mineral Radial Fracture Granitic Pegmatite Infrared Absorption Spectroscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank L. Datas (Raimond Castaing Center, Toulouse), C. Dominici (CP2M, Marseille) and T. Aigouy (GET, Toulouse) for their technical assistance with TEM, FIB, and SEM, respectively. Collaborations were promoted thanks to PHC Aurora (Ministry of Foreign affairs of France and the Research Council of Norway) and funding from Observatoire Midi Pyrenees (visiting fellowship for B. Bingen). The NEEDS French Research Group is thanked for financial support. Prof. E.W. Sawyer (UQAC, Chicoutimi) is warmly thanked for his informal review of this manuscript. An anonymous reviewer and M. Van Lichtervelde are gratefully acknowledged for their thorough revision and insightful comments that improved our manuscript. Finally, Prof. J.G. Raith is thanked for his careful editorial handling.

References

  1. Albertini C, Andersen T (1989) Non-metamict orthorhombic AB2O6 Y–Nb–Ta–Ti oxides from a pegmatite in arvogno, Crana Valley (toceno, Vigezzo Valley, Northern Italy). Rend Soc Ital Mineral Petrol 43:773–779Google Scholar
  2. Atencio D, Andrade MB, Christy AG, Gieré R, Kartashov PM (2010) The pyrochlore supergroup of minerals: nomenclature. Can Mineral 48:673–698CrossRefGoogle Scholar
  3. Aurisicchio C, De Vito C, Ferrini V, Orlandi P (2001) Nb–Ta oxide minerals from miarolitic pegmatites of the baveno pink granite, NW Italy. Mineral Mag 65:509–522CrossRefGoogle Scholar
  4. Baadsgaard H, Chaplin C, Griffin WL (1984) Geochronology of the gloserheia pegmatite, froland, Southern Norway. Nor Geologisk Tidssk 64:111–119Google Scholar
  5. Bermanec V, Tomašić N, Kniewald G, Back ME, Zagler G (2008) Nioboaeschynite-(Y), a new member of the aeschynite group from the bear Lake Diggings, Haliburton County, Ontario, Canada. Can Mineral 46:395–402CrossRefGoogle Scholar
  6. Bingen B, van Breemen O (1998) U–Pb monazite ages in amphibolite-to granulite-facies orthogneisses reflect hydrous mineral breakdown reactions: Sveconorwegian Province of SW Norway. Contrib Mineral Petrol 132:336–353CrossRefGoogle Scholar
  7. Bingen B, Boven A, Punzalan L, Wijbrans J, Demaiffe D (1998) Hornblende 40Ar/39Ar geochronology across terrane boundaries in the Sveconorwegian province of S Norway. Precamb Res 90:159–185CrossRefGoogle Scholar
  8. Bingen B, Nordgulen Ø, Viola G (2008) A four-phase model for the Sveconorwegian orogeny, SW Scandinavia. Nor J Geol 88:43–72Google Scholar
  9. Bjørlykke H (1935) The mineral paragenesis and classification of the granite pegmatites of iveland, setesdal, Southern Norway. Nor Geologisk Tidssk 14:145–161Google Scholar
  10. Bonazzi P, Zoppi M, Dei L (2002) Metamict aeschynite-(Y) from the evje-iveland district (Norway): heat-induced recrystallisation and dehydrogenation. Eur J Mineral 14:141–150CrossRefGoogle Scholar
  11. Bonazzi P, Bindi L, Zoppi M, Capitani GC, Olmi F (2006) Single-crystal diffraction and transmission electron microscopy studies of “silicified” pyrochlore from Narssârssuk, julianehaab district, Greenland. Am Mineral 91:794–801CrossRefGoogle Scholar
  12. Černý P, Ercit TS (2005) The classification of granitic pegmatites revisited. Can Mineral 43:2005–2026CrossRefGoogle Scholar
  13. d’Abzac F-X, Seydoux-Guillaume A-M, Chmeleff J, Datas L, Poitrasson F (2012) In-situ characterization of infra red femtosecond laser ablation in geological samples. Part a: the Laser Induced Damage J Anal At Spectrom 27:99–107Google Scholar
  14. Dare SAS, Barnes S-J, Beaudoin G, Méric J, Boutroy E, Potvin-Doucet C (2014) Trace elements in magnetite as petrogenetic indicators. Mineral Deposita 49:785–796CrossRefGoogle Scholar
  15. Deschanels X, Seydoux-Guillaume A-M, Magnin V, Mesbah A, Tribet M, Moloney M, Serruys Y, Peuget S (2014) Swelling induced by alpha decay in monazite and zirconolite ceramics: a XRD and TEM comparative study. J Nucl Mater 448:184–194CrossRefGoogle Scholar
  16. Dumańska-Slowik M, Pieczka A, Tempesta G, Olejniczak Z, Heflik W (2014) “silicified” pyrochlore from nepheline syenite (mariupolite) of the mariupol massif, SE Ukraine: A new insight into the role of silicon in the pyrochlore structure. Am Mineral 99:2008–2017CrossRefGoogle Scholar
  17. Ercit TS (2005) Identification and alteration trends of granitic-pegmatite-hosted (Y,REE,U,Th)–(Nb,Ta,Ti) oxide minerals: a statistical approach. Can Mineral 43:1291–1303CrossRefGoogle Scholar
  18. Ewing RC (1994) The metamict state: 1993 the centennial. Nucl Instrum Methods Phys Res, Sect B 91:22–29CrossRefGoogle Scholar
  19. Ewing RC, Meldrum A, Wang LM, Wang SX (2000) Radiation-induced amorphisation. In: ribbe PH (ed), transformation processes in minerals. Rev Mineral Geochem 39:319–361CrossRefGoogle Scholar
  20. Firestone RB, Shirley VS (1996) Table of isotopes 2. Wiley, New YorkGoogle Scholar
  21. Geisler T, Seydoux-Guillaume A-M, Poeml P, Golla-Schindler U, Berndt J, Wirth R, Pollok K, Janssen A, Putnis A (2005a) Experimental hydrothermal alteration of crystalline and radiation-damaged pyrochlore. J Nuc Mat 344:17–23CrossRefGoogle Scholar
  22. Geisler T, Pöml P, Stephan T, Janssen A, Putnis A (2005b) Experimental observation of an interface-controlled pseudomorphic replacement reaction in a natural crystalline pyrochlore. Am Mineral 90:1683–1687CrossRefGoogle Scholar
  23. Geisler T, Schaltegger U, Tomaschek F (2007) Re-equlibration of zircon in aqueous fluids and melts. Elements 3:43–50CrossRefGoogle Scholar
  24. Gieré R, Williams TC, Wirth R, Ruschel K (2009) Metamict fergusonite-(Y) in a spessartine-bearing granitic pegmatite from adamello, Italy. Chem Geol 261:333–345CrossRefGoogle Scholar
  25. Gysi AP, Williams-Jones AE (2013) Hydrothermal mobilization of pegmatite-hosted REE and Zr at strange Lake, Canada: a reaction path model. Geochim Cosmochim Ac 122:324–352CrossRefGoogle Scholar
  26. Gysi AP, Williams-Jones AE, Harlov D (2015) The solubility of xenotime-(Y) and other HREE phosphates (DyPO4, ErPO4 and YbPO4) in aqueous solutions from 100 to 250 °C and psat. Chem Geol 401:83–95CrossRefGoogle Scholar
  27. Haas JR, Shock EL, Sassani DC (1995) Rare earth elements in hydrothermal systems: estimates of standard partial molal thermodynamic properties of aqueous complexes of the rare earth elements at high pressures and temperatures. Geochim Cosmochim Ac 59:4329–4350CrossRefGoogle Scholar
  28. Hanson SL, Simmons WB, Webber KW, Falster AU (1992) Rare-earth-element mineralogy of granitic pegmatites in the Trout Creek pass district, Chaffee County, Colorado. Can Mineral 30:673–686Google Scholar
  29. Hanson SL, Simmons WB, Falster AU (1998) Nb–Ta–Ti oxides in granitic pegmatites from the Topsham pegmatite district, Southern Maine. Can Mineral 36:601–608Google Scholar
  30. Hetherington CJ, Harlov DE (2008) Metasomatic thorite and uraninite inclusions in xenotime and monazite from granitic pegmatites, hidra anorthosite massif, Southwestern Norway: mechanics and fluid chemistry. Am Mineral 93:806–820CrossRefGoogle Scholar
  31. Hetherington CJ, Harlov DE, Budzyń B (2010) Experimental metasomatism of monazite and xenotime: mineral stability, REE mobility and fluid composition. Mineral Petrol 99:165–184CrossRefGoogle Scholar
  32. Hombourger C, Outrequin M (2013) Quantitative analysis and high resolution X-ray mapping with a field emission electron microprobe. Microscopy Today 21:10–15CrossRefGoogle Scholar
  33. Janots E, Berger A, Gnos E, Whitehouse M, Lewin E, Pettke T (2012) Constraints on fluid evolution during metamorphism from U–Th–Pb systematics in alpine clef-hosted monazite. Chem Geol 326–327:61–71CrossRefGoogle Scholar
  34. Keppler H, Wyllie PJ (1990) Role of fluids in transport and fractionation of uranium and thorium in magmatic processes. Nature 348:531–533CrossRefGoogle Scholar
  35. Larsen RB (2002) The distribution of rare-earth elements in K-feldspars as an indicator of petrogenetic processes in granitic pegmatites: examples from two pegmatite fields in Southern Norway. Can Mineral 40:137–151CrossRefGoogle Scholar
  36. Larsen RB, Henderson I, Ihlen PM (2004) Distribution and petrogenetic behaviour of trace elements in granitic pegmatite quartz from South Norway. Contrib Mineral Petrol 147:615–628CrossRefGoogle Scholar
  37. Lee JKW, Tromp J (1995) Self-induced fracture generation in zircon. J Geophys res 100. Issue B9:17753–17770Google Scholar
  38. Loges A, Migdisov AA, Wagner T, Williams-Jones AE, Markl G (2013) An experimental study of the aqueous solubility and speciation of Y(III) fluoride at temperatures up to 250 °C. Geochim Cosmochim Ac 123:403–415CrossRefGoogle Scholar
  39. London D (2014) A petrologic assessment of internal zonation in granitic pegmatites. Lithos 184–187:74–104CrossRefGoogle Scholar
  40. Lumpkin GR (1998) Rare-element mineralogy and internal evolution of the Rutherford #2 pegmatite, Amelia County, Virginia: a classic locality revisited. Can Mineral 36:339–353Google Scholar
  41. Lumpkin GR, Ewing RC (1995) Geochemical alteration of pyrochlore group minerals: pyrochlore subgroup. Am Mineral 80:732–743CrossRefGoogle Scholar
  42. McDonough WF, Sun SS (1995) The composition of the earth. Chem Geol 120:223–253CrossRefGoogle Scholar
  43. Melcher F, Graupner T, Gäbler HE, Stinikova M, Friedhelm HK, Oberthür T, Gerdes A, Dewaele S (2015) Tantalum–(niobium–tin) mineralisation in African pegmatites and rare metal granites: Constraints from Ta–Nb oxide mineralogy, geochemistry and U–Pb geochronology. Ore Geol Rev 64:667–719CrossRefGoogle Scholar
  44. Mitchell RH (2015) Primary and secondary niobium mineral deposits associated with carbonatites. Ore Geol Rev 64:626–641CrossRefGoogle Scholar
  45. Montel J-M, Giot R (2013) Fracturing around radioactive minerals: elastic model and applications. Phys Chem Miner 40:635–645CrossRefGoogle Scholar
  46. Müller A, Ihlen PM, Snook B, Larsen RB, Flem B, Bingen B, Williamson BJ (2015) The chemistry of quartz in granitic pegmatites of Southern Norway: petrogenetic and economic implications. Econ Geol 110:1737–1757CrossRefGoogle Scholar
  47. Nasdala L, Wenzel M, Vavra G, Irmer G, Wenzel T, Kober B (2001) Metamictisation of natural zircon: accumulation versus thermal annealing of radioactivity -induced damage. Contrib Mineral Petrol 141:125–144CrossRefGoogle Scholar
  48. Nasdala L, Kronz A, Wirth R, Vàczi T, Pérez-Soba C, Willner A, Kennedy AK (2009) The phenomenom of deficient electron microprobe totals in radiation-damaged and altered zircon. Geochim Cosmochim Ac 73:1637–1650CrossRefGoogle Scholar
  49. Pedersen S, Andersen T, Konnerup-Madsen J, Griffin WL (2009) Recurrent mesoproterozoic continental magmatism in South-Central Norway. Int J Earth Sci 98:1151–1171CrossRefGoogle Scholar
  50. Poitrasson F, Chenery S, Shepherd TJ (2000) Electron microprobe and LA-ICP-MS study of monazite hydrothermal alteration: implications for the U–Th–Pb geochronology and nuclear ceramics. Geochim Cosmochim Ac 64:3283–3297CrossRefGoogle Scholar
  51. Pöml P, Menneken M, Stephan T, Niedermeier DDR, Geisler T, Putnis A (2007) Mechanism of hydrothermal alteration of natural self-irradiated and synthetic crystalline titanate-based pyrochlore. Geochim Cosmochim Ac 71:3311–3322CrossRefGoogle Scholar
  52. Putnis A (2009) Mineral replacement reactions. In: oelkers EH, Schott J (eds), Thermodynamics and kinetics of water–rock interaction. Rev Mineral Geochem 70:87–124CrossRefGoogle Scholar
  53. Putnis A (2015) Transient porosity resulting from fluid–mineral interaction and its consequences. In: steefel CI, Emmanuel S, anovitz LM (eds), pore-scale geochemical processes. Rev Mineral Geochem 80:1–23CrossRefGoogle Scholar
  54. Rossman GR (1988) Vibrational spectroscopy of hydrous components. Rev Mineral Geochem 18:193–206Google Scholar
  55. Røyne A, Jamtveit B (2015) Pore-scale controls on reaction-driven fracturing. In: steefel CI, Emmanuel S, anovitz LM (eds), pore-scale geochemical processes. Rev Mineral Geochem 80:25–44CrossRefGoogle Scholar
  56. Ruschel K, Nasdala L, Rhede D, Wirth R, Lengauer CL, Libowitzky E (2010) Chemical alteration patterns in metamict fergusonite. Eur J Mineral 22:425–433CrossRefGoogle Scholar
  57. Scherer E, Munker C, Mezger K (2001) Calibration of the lutetium-hafnium clock. Science 293:683–687CrossRefGoogle Scholar
  58. Seydoux-Guillaume A-M, Wirth R, Ingrin J (2007) Contrasting response of ThSiO4 and monazite to natural irradiation. Eur J Mineral 19:7–14CrossRefGoogle Scholar
  59. Seydoux-Guillaume A-M, Montel J-M, Wirth R, Moine B (2009) Radiation damage in diopside and calcite crystals from uranothorianite inclusions. Chem Geol 261:318–332CrossRefGoogle Scholar
  60. Seydoux-Guillaume A-M, Montel J-M, Bingen B, Bosse V, de Parseval P, Paquette J-L, Janots E, Wirth R (2012) Low-temperature alteration of monazite: fluid mediated coupled dissolution-precipitation, irradiation damage, and disturbance of the U-Pb and Th-Pb chronometers. Chem Geol 330–331:140–158CrossRefGoogle Scholar
  61. Seydoux-Guillaume A-M, Bingen B, Paquette J-L, Bosse V (2015) Nanoscale evidence for uranium mobility in zircon and the discordance of U-Pb chronometers. Earth Planet Sci Lett 409:43–48CrossRefGoogle Scholar
  62. Škoda R, Novák M (2007) Y,REE,Nb,Ta,Ti-oxide (AB2O6) minerals from REL–REE euxenite-subtype pegmatites of the Třebíč Pluton, Czech Republic; substitutions and fractionation trends. Lithos 95:43–57CrossRefGoogle Scholar
  63. Škoda R, Novák M, Cícha J (2011) Uranium–niobium-rich alteration products after “písekite”, an intimate mixture of Y, REE, Nb, Ta, Ti-oxide minerals from the Obrázek I pegmatite, Písek, Czech Republic. J Geosci 56:317–325Google Scholar
  64. Sylvester AG (1964) The precambrian rocks of the telemark area in south Central Norway, III, geology of the Vrådal granite. Nor Geologisk Tidssk 44:445–482Google Scholar
  65. Timofeev A, Migdisov AA, Williams-Jones AE (2015) An experimental study of the solubility and speciation of niobium in fluoride-bearing aqueous solutions at elevated temperature. Geochim Cosmochim Ac 158:103–111CrossRefGoogle Scholar
  66. Vander Auwera J, Bolle O, Bingen B, Liégeois J-P, Bogaerts M, Duchesne J-C, De Waele B, Longhi J (2011) Sveconorwegian massif-type anorthosites and related granitoids result from post-collisional melting of a continental arc root. Earth Sci Rev 107:375–397CrossRefGoogle Scholar
  67. Weber WJ, Ewing RC, Catlow CRA, Diaz de la Rubia T, Hobbs LW, Kinishita C, Matzke HJ, Motta AT, Nastasi M, Salje EHK, Vance ER, Zinkle SJ (1998) Radiation effects in crystalline ceramics for the immobilization of high-level nuclear waste and plutonium. J Mater Res 13:1434–1484CrossRefGoogle Scholar
  68. Wood SA (1990a) The aqueous geochemistry of the rare earth elements and yttrium: 1. Review of Available Low-Temperature Data for Inorganic Complexes and the Inorganic REE Speciation of Natural Waters Chem Geol 82:159–186Google Scholar
  69. Wood SA (1990b) The aqueous geochemistry of the rare-earth elements and yttrium 2. theoretical predictions of speciation in hydrothermal solutions to 350 °C at saturation water vapor pressure. Chem Geol 88:99–125CrossRefGoogle Scholar
  70. Wood SA (2005) The aqueous geochemistry of zirconium, hafnium, niobium and tantalum. In: linnen RL, Samson IM (eds), Rare-element geochemistry and mineral deposits. Geological Association Of Canada, GAC Short Course Notes 17:217–268Google Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  • Charley J. Duran
    • 1
  • Anne-Magali Seydoux-Guillaume
    • 2
    • 5
  • Bernard Bingen
    • 3
  • Sophie Gouy
    • 2
  • Philippe de Parseval
    • 2
  • Jannick Ingrin
    • 4
  • Damien Guillaume
    • 2
    • 5
  1. 1.Sciences de la TerreUniversité du Québec À ChicoutimiChicoutimiCanada
  2. 2.GET, UMR 5563 CNRSUniversité Paul SabatierToulouseFrance
  3. 3.Geological Survey of NorwayTrondheimNorway
  4. 4.UMET, UMR 8207 CNRSUniversité de Lille1Villeneuve d’AscqFrance
  5. 5.LMV, UMR 6524 CNRS-UBP-UJM-IRDFaculté des Sciences et TechniquesSaint ÉtienneFrance

Personalised recommendations