Mineralogy and Petrology

, Volume 110, Issue 5, pp 623–638 | Cite as

Magma storage of an alkali ultramafic igneous suite from Chamberlindalen, SW Svalbard

  • Karolina Gołuchowska
  • Abigail K. Barker
  • Jerzy Czerny
  • Jarosław Majka
  • Maciej Manecki
  • Milena Farajewicz
  • Maciej Dwornik
Original Paper


An alkali mafic-ultramafic igneous suite of composite intrusions, lenses and associated greenstones are hosted by Neoproterozoic metasedimentary sequences in Chamberlindalen, Southwest Svalbard. This study focuses on the alkali igneous suite of Chamberlindalen with a view to determining the conditions of magma storage. The rocks from Chamberlindalen display cumulate textures, are highly magnesian and are classified as alkaline by the occurrence of kaersutite. They have textures that indicate cocrystallization of primary magmatic minerals such as diopside, kaersutite-ferrokaersutite and biotite-phlogopite in different proportions. The historic magma plumbing system for the alkaline cumulates has been reconstructed by thermobarometry. Diopside and kaersutite crystallization in the alkaline cumulates show a dominant level of magma storage between 30 and 50 km in the subcontinental lithospheric mantle.


Serpentine Diopside Alkali Basalt East African Rift Metamorphic Mineral 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We would like to thank all the scientists who participated in the polar expeditions to Wedel Jarlsberg Land, Svalbard, under the leadership of Jerzy Czerny. This work would never have been possible without their support for organization of expeditions, collecting samples and making geological observations. We thank Ester Muñoz Jolis and Börje Dahren from Uppsala University for helpful discussions. We are grateful to Xueming Yang, Matteo Masotta, Godfrey Fitton and to two anonymous reviewers for valuable feedback on this manuscript. Financial support for the research was provided by Polish National Science Centre (NCN) grant, No. DEC-2012/05/N/ST10/03594 to K. Gołuchowska and the AGH-UST statutory funds No. to M. Manecki.

Supplementary material

710_2016_431_MOESM1_ESM.xls (228 kb)
Online Resources 1 (XLS 228 kb)
710_2016_431_MOESM2_ESM.xls (33 kb)
Online Resources 2 (XLS 33 kb)


  1. Ablay GJ, Carroll MR, Palmer MR, Marti J, Sparks RSJ (1998) Basanite-phonolite lineages of the Teide-Pico Viejo volcanic complex, Tenerife, Canary Islands. J Petrol 39:905–936CrossRefGoogle Scholar
  2. Arghe F, Skelton A, Pitcairn I (2011) Spatial coupling between spilitization and carbonation of basaltic sills in SW Scottish Highlands: evidence of a mineralogical control of metamorphic fluid flow. Geofluids 11:245–259Google Scholar
  3. Barker AK, Troll VR, Carracedo J-C, Nicholls PA (2015) The magma plumbing system for the 1971 Tenguia eruption, La Palma, Canary Islands. Contrib Mineral Petrol 170(5). doi: 10.1007/s00410-015-1207-7
  4. Bingen B, Demaiffe D, van Breemen O (1998) The 616 Ma old Egersund basaltic dike swarm, SW Norway, and Late Neoproterozoic opening of the Iapetus Ocean. J Geol 106:565–574Google Scholar
  5. Birkenmajer K (1975) Caledonides of Svalbard and plate tectonics. Bull Geol Soc Den 24:1–19Google Scholar
  6. Birkenmajer K (1991) The Jarlsbergian unconformity (Proterozoic/Cambrian boundary) and the problem of Varangian tillites in South Spitsbergen. Pol Polar Res 12:269–278Google Scholar
  7. Birkenmajer K, Krajewski KP, Pécskay Z, Lorenc MW (2010) K-Ar dating of basic intrusions at Bellsund, Spitsbergen, Svalbard. Pol Polar Res 31:3–16Google Scholar
  8. Bjørnerud M (1990) An Upper Proterozoic unconformity in northern Wedel Jarlsberg Land, southwest Spitsbergen: lithostratigraphy and tectonic implications. Polar Res 8:127–139Google Scholar
  9. Bjørnerud MG (2010) Stratigraphic record of Neoproterozoic ice sheet collapse: the Kapp Lyell diamictite sequence, SW Spitsbergen, Svalbard. Geol Mag 147:380–390Google Scholar
  10. Brune S, Heine C, Pérez-Gussinyé M, Sobolev SV (2014) Rift migration explains continental margin asymmetry and crustal hyper-extension. Nat Commun 5:1–9CrossRefGoogle Scholar
  11. Class C, Goldstein SL (1997) Plume-lithosphere interactions in the ocean basins: constraints from the source mineralogy. Earth Planet Sc Lett 150:245–260CrossRefGoogle Scholar
  12. Czerny J (1999) Petrogenesis of metavolcanites of the southern part of Wedel Jarlsberg Land (Spitsbergen). Prace Mineralogiczne 86, Krakow: Wydawnictwo Oddzialu PAN, pp 1–88Google Scholar
  13. Dahren B, Troll VR, Andersson UB, Chadwick JP, Gardner MF, Jaxybulatov K, Koulakov I (2012) Magma plumbing beneath Anak Krakatau volcano, Indonesia: evidence from multiple magma storage regions. Contrib Mineral Petrol 163:631–651Google Scholar
  14. Dallmann WK, Hjelle A, Otha Y, Salvigsen O, Maher HD, Bjørnerud M, Hauser EC, Craddock C (1990) Geological map of Svalbard 1: 100,000, Van Keulenfjorden. With description. Norsk Polarinstitutt Temakart, No. 15Google Scholar
  15. Dunn T, Sen C (1994) Mineral/matrix partition-coefficient for orthopyroxene, plagioclase and olivine in basaltic to andesitic systems – a combined analytical and experimental study. Geochim Cosmochim Ac 58:717–733CrossRefGoogle Scholar
  16. Fettes DJ, Macdonald R, Fitton JG, Stephenson JD, Cooper MR (2011) Geochemical evolution of Dalradian metavolcanics rocks: implications for the break-up of the Rodinia supercontinent. J Geol Soc Lond 168:1133–1146Google Scholar
  17. Furman T, Graham D (1999) Erosion of lithospheric mantle beneath the East African Rift system: geochemical evidence from the Kivu volcanic province. Lithos 48:237–262Google Scholar
  18. Gee DG, Tebenkov AM (2004) Svalbard: a fragment of the Laurentian margin. In: Gee DG, Pease V (eds) The Neoproterozoic Timanide Orogen of eastern Baltica, Geol Soc Lond Mem vol, vol 30, pp. 191–206Google Scholar
  19. Gee DG, Fossen H, Henriksen N, Higgins K (2008) From the early Paleozoic platforms of Baltica and Laurentia to the Caledonide Orogen of Scandinavia and Greenland. Episodes 31:44–51Google Scholar
  20. Goluchowska K, Barker AK, Majka J, Manecki M, Czerny J, Bazarnik J (2012) Preservation of magmatic signals in metavolcanics from Wedel Jarlsberg Land, SW Svalbard. Mineralogia 43:179–197Google Scholar
  21. Harland WB, Hambry MJ, Waddams P (1993) The Vendian geology of Svalbard. Nor Polarinst Skr 193:1–130Google Scholar
  22. Henderson CMB, Foland KA (1996) Ba- and Ti-rich primary biotite from the Brome alkaline igneous complex, Monteregian Hills, Quebec: mechanism of substitution. Can Mineral 34:1241–1252Google Scholar
  23. Hollocher K, Robinson P, Walsh E, Terry MP (2007) The Neoproterozoic Ottfjället dike swarm of the Middle Allochthon, traced geochemically into the Scandian Hinterland, western gneiss region, Norway. Am J Sci 307:901–953Google Scholar
  24. Klügel A, Hansteen TH, Galipp K (2005) Magma storage and underplating beneath Cumbre Vieja volcano, La Palma (Canary Islands). Earth Planet Sci Lett 236:211–226Google Scholar
  25. Lalonde AE, Rancourt DG, Chao GY (1996) Fe-bearing trioctahedral micas from Mont Saint-Hilaire, Québec, Canada. Mineral Mag 60:447–460Google Scholar
  26. Leake BE, Woolley AR, Arps CES, Birch WD, Gilbert MC, Grice JD, Hawthorne FC, Kato A, Kisch HJ, Krivovichev VG, Linthout K, Laird J, Mandarino JA, Maresch WV, Nickel EH, Rock NMS, Schumacher JC, Smith DC, Stephenson NCN, Ungaretti L, Whittaker EJW, Youzhi G (1997) Nomenclatures of amphiboles: report of the subcommittee on amphiboles of the international mineralogical association, commission on new minerals and mineral names. Can Mineral 35:219–246Google Scholar
  27. Lundin ER, Doré AG (2011) Hyperextension, serpentinization, and weakening: a new paradigm for rifted margin compressional deformation. Geology 39:347–350CrossRefGoogle Scholar
  28. Majka J, Mazur S, Manecki M, Czerny J, Holm DK (2008) Late Neoproterozoic amphibolite-facies metamorphism of a pre-Caledonian basement block in southwest Wedel Jarlsberg Land, Spitsbergen: new evidence from U-Th-Pb dating of monazite. Geol Mag 145:822–830Google Scholar
  29. Majka J, Czerny J, Mazur S, Holm DK, Manecki M (2010) Neoproterozoic metamorphic evolution of the Isbjørnhamna Group rocks from south-western Svalbard. Polar Res 29:250–264Google Scholar
  30. Majka J, Larionov AN, Gee DG, Czerny J, Pršek J (2012) Neoproterozoic pegmatite from Skoddefjelet, Wedel Jarlsberg Land, Spitsbergen: additional evidence for c. 640 Ma tectonothermal event in the Caledonides of Svalbard. Pol Polar Res 33:1–17Google Scholar
  31. Majka J, Be’eri-Shlevins Y, Gee DG, Czerny J, Frei D, Ladenberger A (2014) Torellian (c.640 Ma) metamorphic overprint of Tonian (c. 950 Ma) basement in the Caledonides of southwestern Svalbard. Geol Mag 150:1–17Google Scholar
  32. Morimoto N, Fabries J, Ferguson AK, Ginzburg IV, Ross M, Seifert FA, Zussman J, Aoki K, Gottardi G (1988) Nomenclature of pyroxenes. Am Mineral 73:1123–1133Google Scholar
  33. Muecke GK, Pride C, Sarkar P (1979) Rare-earth element geochemistry of regional metamorphic rocks. Phys Chem Earth 11:449–464CrossRefGoogle Scholar
  34. Nystuen JP, Andresen A, Kumpulainen RA, Siedlecka A (2008) Neoproterozoic basin evolution in Fennoscandia, East Greenland and Svalbard. Episodes 31:35–43Google Scholar
  35. Peate DW, Baker JA, Blichert-Toft J, Hilton DR, Storey M, Kent AJR, Brooks CK, Hansen H, Pedersen AK, Duncan RA (2003) The Prinsen af Wales Bjerge formation lavas, East Greenland: the transition from tholeiitic to alkalic magmatism during Paleogene continental break-up. J Petrol 44:279–304Google Scholar
  36. Péron-Pinvidic G, Van Wijk J, Shillington DJ, Gernigon L (2009) An introduction to the Tectonophysics Special Issue “role of magmatism in continental lithosphere extension”. Tectonophysics 468:1–5Google Scholar
  37. Putirka KD (2008) Thermometers and barometers for volcanic system. In: Putirka KD, Tepley FJ III (eds) Minerals, iclusions and volcanic processes. Rev Mineral Geochem vol 69. Mineral Soc Am, Washington DC, pp 61–120Google Scholar
  38. Putirka K, Johnson M, Kinzler R, Longhi J, Walker D (1996) Thermobarometry of mafic igneous rocks based on clinopyroxene-liquid equilibria, 0-30 kbar. Contrib Mineral Petrol 123:92–108CrossRefGoogle Scholar
  39. Putirka KD, Mikaelian H, Ryerson F, Shaw H (2003) New clinopyroxene-liquid thermobarometers for mafic, evolved, and volatile-bearing lava compositions, with applications to lavas from Tibet and the Snake River Plane, Idaho. Am Mineral 88:1542–1554Google Scholar
  40. Ridolfi F, Renzulli A (2012) Calcic-amphiboles in calc-alkaline magmas: thermobarometric and chemometric empirical equations valid up to 1,130 °C and 2.2 GPa. Contrib Mineral Petrol 163:877–895CrossRefGoogle Scholar
  41. Ridolfi F, Renzulli A, Puerini M (2010) Stability and chemical equilibrium of amphibole in calc-alkaline magmas: and overview, new thermobarometric formulations and applications to subduction-related volcanoes. Contrib Mineral Petrol 160:45–66CrossRefGoogle Scholar
  42. Skelton A, Arghe F, Pitcairn I (2010) Regional mapping of pre-metamorphic spilitization and associated chemical mobility in greenschist-facies metabasalts of the SW Scottish Highlands. J Geol Soc Lond 167:1049–1061Google Scholar
  43. Smulikowski W (1974) Amphiboles and biotite in relation to the stages of metamorphism in granogabbro. Mineral Mag 39:857–866CrossRefGoogle Scholar
  44. Soper NJ (1994) Neoproterozoic sedimentation on the northeast of Laurentia and opening of Iapetus. Geol Mag 131:291–299Google Scholar
  45. Stroncik NA, Klügel A, Hansteen TH (2009) The magmatic plumbing system beneath El Hierro (Canary Islands): constraints from phenocrysts and naturally quenched basaltic glasses in submarine rocks. Contrib Mineral Petrol 157:593–607Google Scholar
  46. Sun S-S, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the ocean basins. Geological Society, London, Special Publications, vol 42, pp 313–345Google Scholar
  47. Sun S-S, Nesbitt RW (1979) Geochemical characteristics of Mid-Oceans Ridge Basalts. Earth Planet Sc Lett 44:119–138Google Scholar
  48. Tiepolo M, Bottazzi P, Foley SF, Oberti R, Vannucci R, Zanetti A (2001) Fractionation of Nb and Ta from Zr and Hf at mantle depths: the role of titanian pargasite and kaersutite. J Petrol 42:221–232CrossRefGoogle Scholar
  49. Wallace ME, Green DH (1991) The effect of bulk rock composition on the stability of amphibole in the upper mantle: implications for solidus positions and mantle metasomatism. Mineral Petrol 44:1–19CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  • Karolina Gołuchowska
    • 1
    • 2
  • Abigail K. Barker
    • 2
  • Jerzy Czerny
    • 1
  • Jarosław Majka
    • 1
    • 2
  • Maciej Manecki
    • 1
  • Milena Farajewicz
    • 1
  • Maciej Dwornik
    • 1
  1. 1.Faculty of Geology, Geophysics and Environmental ProtectionAGH – University of Science and TechnologyKrakowPoland
  2. 2.CEMPEG, Department of Earth SciencesUppsala UniversityUppsalaSweden

Personalised recommendations